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 M.Sc. PHYSICS – I YEAR  

SPHM11 : MATHEMATICAL PHYSICS 

SYLLABUS 

UNIT I:  LINEAR VECTOR SPACE 

Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product- 

Orthogonality – Gram-Schmidt orthogonalization procedure – linear operators – Dual space- ket 

and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection 

operator –Eigen values and Eigen functions–Directs man din variant sub space–orthogonal  

Transformations and rotation   

UNITII:   COMPLEX ANALYSIS, PROBABILITY&STATISTICS  

Review of Complex Numbers - de Moivre’s Theorem - Functions of a Complex Variable- 

Differentiability - Analytic functions- Harmonic Functions- Complex Integration- Contour 

Integration, Cauchy – Riemann conditions – Singular points – Cauchy’s Integral Theorem and 

integral Formula -Taylor’s Series - Laurent’s Expansion-Zeros and poles – Residue theorem.  

Probability – Introduction – Addition rule of probability – Multiplication law of probability–

Problems – Introduction to statistics – Mean, median, mode and standard deviations.  

UNIT III:   MATRICES  

Types of Matrices and their properties, Rank of a Matrix-Conjugate of a matrix 

- Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices - Trace of a matrix- 

Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley–

Hamilton theorem – Diagonalization 

UNIT IV:   FOURIER TRANSFORMS & LAPLACE TRANSFORMS  

Definitions - Fourier transform and its inverse - Transform of Gaussian function and Dirac delta 

function - Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. 

Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - 

Wave equation: Vibration of an infinite string and of a semi - infinite string.  

Laplace transform and its inverse - Transforms of derivatives and integrals – Differentiation and 

integration of transforms - Dirac delta functions -Application - Laplace equation: Potential 

problem in a semi - infinite strip  
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UNIT V:  DIFFERENTIAL EQUATIONS  

Second order differential equation – Sturm - Liouville’s theory - Series solution with simple 

examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence 

relations – Legendre polynomials – Generating function - Rodrigue formula – Orthogonality 

properties - Dirac delta function – One dimensional Green’s function and Reciprocity theorem-

Sturm - Liouville’s type equation in one dimension & their Green’s function.  

UNIT VI:  PROFESSIONAL COMPONENTS 

Expert Lecture, Online seminar – Webinars on Industrial Interactions/Visits, Competitive 

Examinations, Employable and Communication Skill Enhancement, Social Accountability and 

Patriotism 
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UNIT I:  LINEAR VECTOR SPACE 

 Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product- 

Orthogonality – Gram-Schmidt orthogonalization procedure – linear operators – Dual space- ket 

and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection 

operator –Eigen values and Eigen functions– Directs man din variant sub space–orthogonal  

Transformations and rotation   

1.1 Vectors: 

               A vector is a quantity having both magnitude and direction such as force, velocity, 

acceleration, displacement etc. 

1.2 Vector space: 

 Let (F, +)  be a field.   Let V be a non empty set whose elements are vectors. Then V is a 

vector space over the field F, if the following conditions are satisfied:  

1. (V, +) is an abelian group 

                (i) Closure property: 

                               V is closed with respect to addition 

                                    i.e., α ∈ V, β ∈ V  α + β ∈ V  

                (ii) Associative: 

                                  α + (β + ) = (α + β) +   α, β,  ∈ V 

                (iii) Existence of identity: 

                                  an elements 0 ∈ V (zero vector) such that α + 0 = α,  α ∈ V 

                 (iv) Existence of inverse: 

                                      To every vector α in V can be associated with a unique vector - α in V 

called the additive inverse 

                                   i.e., α + (- α) = 0 

                  (v) Commutative: 

                                    α + β = β + α,  α, β ∈ V 

2. V is closed under scalar multiplication 

                                   i.e., a ∈ F, α ∈ V  a α ∈ V 

 3. Multiplication and addition of vector is a distributive property i.e.,  



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

5                                                  Mathematical Physics 
 

                          (i)    a (α + β) = aα + aβ,  a ∈ F, α, β ∈ V 

                          (ii)   (a + b) α = aα + bα,  a, b ∈ F, α ∈ V 

                          (iii)  (ab) α = a (b α),  a, b ∈ F, α ∈ V 

                           (iv)  1  α = α,  α ∈ V and 1 is the unity element in F. 

 

1.3 Linear dependence and independence of vectors 

Vectors (matrices)  X1, X2, .... Xn are said to be dependent.  if 

                            (1)  all the vectors (row or column matrices) are of the same order. 

                            (2)  n scalars 1,  2, ... n (not all zero) exist such that 

                                            1 X1 + 2 X2 + 3 X3 + ..... + n Xn = 0 

Otherwise they are linearly independent. 

                    If in a set of vectors, any vector of the set is the combination of the remaining 

vectors, then the vectors are called dependent vectors. 

Example: 

1. Examine the following vectors for linear dependence and find the relation if it exists. 

X1 = (1, 2, 4),  X2 = (2, –1, 3),   X3 = (0, 1, 2),   X4 = (–3, 7, 2) 

Solution. Consider the matrix equation 

                     1 X1 + 2 X2 + 3 X3 + 4 X4 = 0 

                      1 (1, 2, 4) + 2 (2, –1, 3) + 3 (0, 1, 2) + 4 (– 3, 7, 2) = 0  -------(1) 

1 + 2 2 + 0 3 – 3 4 = 0 

2 1 – 2 + 3 + 7  4 = 0 

4 1 + 3 2 + 2 3 + 2 4 = 0 

This is the homogeneous system 

[
1 2 0 −3
2 −1 1 7
4 3 2 2

] [

𝜆1

𝜆2

𝜆3

𝜆4

]  =[
0
0
0

]    

R2→ R2 − 2 R2 

                                                                   R3 → R3 - 4 R1 
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[
1 2 0 −3
0 −5 1 13
0 −5 2 14

] [

𝜆1

𝜆2

𝜆3

𝜆4

] = [
0
0
0

] 

R3 → R3 - R2 

[
1 2 0 −3
0 −5 1 13
0 0 1 1

] [

𝜆1

𝜆2

𝜆3

𝜆4

] = [
0
0
0

] 

   1 + 2  2 – 3  4 = 0 

–5  2 +  3 + 13  4 = 0 

                                                                     3 +  4 = 0 

Let                                                     4 = t, 3 + t = 0, 3= – t 

                                         – 5 2 – t +  3 t  =  0;    2 = 12t /5 

                                            1+ 24t / 5 - 3t = 0;            1 =  -9t  /5 

                                       Hence, the given vectors are linearly dependent. 

Substituting the values of 𝜆 in (1), we get 

9 
𝑡𝑥1

5
+

12𝑡

5
𝑥2 − 𝑡𝑥3 + 𝑡𝑥4 = 0 

−
9

5
𝑥1 +

12

5
𝑥2 − 𝑥3 + 𝑥4 = 0 

                                                            9x1  - 12x2 + 5x3  - 5x4=0  

1.4 Inner Product (Scalar Product): 

 In ordinary three dimensional space the scalar product achieves, 

                      1. The scalar product of a vector with itself helps to define the length of the vector. 

                      2. It is a measure of relative orientation of the vectors, when the lengths are known. 

In a linear vector space the inner product of two vectors ψ and φ is denoted by (ψ, φ). The 

inner product has the following properties. 
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1.5  Properties of Inner Product: 

                               1. (ψ, φ + ξ) = (ψ, φ) + (ψ, ξ) 

                               2. (ψ + φ, ξ) = (ψ, ξ) + (φ, ξ) 

                               3. (ψ, ψ)  > 0 unless ψ = 0 

                               4. (ψ, φ) =    (φ, ψ)* 

                               5. (ψ, α φ + β ξ) = α (ψ, φ) + β (ψ, ξ) Where α and β are arbitrary complex 

numbers. 

                               6. The norm (length) is denoted by || ψ||, and is defined as || ψ|| = (ψ, ψ)1/2 

In an n- dimensional space, elements of basis are α 1, α 2, ……. α n, (the magnitude of each 

element of the basis is unity then the elements are called unit vectors) then two vectors ψ 

and φ in the space can be expressed as 

                               Ψ  =  c1α 1 + c2 α 2 + …………..+  cn α n and  

                               φ   =  b1α 1 + b2 α 2 + …………..+ bn α n 

                     Then the inner product of ψ and φ is 

(Ψ, φ)   = ∑ 𝑐𝑖
∗𝑏𝑖

𝑛

𝑖=1
  =  c1* b1 + c2* b2 + …………..+ cn* bn 

Example 

1. Calculate inner product of the two vectors A and B given by 

              A = 5 α 1 - 3 α 2 - 4 α 3 - α 4 + 2 α 5   and  

           B = - α 1 + 2 α 2 - 3 α 3 + α 4 + α 5 

Solution: 

               The inner product of A and B is 

                  (A, B)  =   (5) (-1)  +  (-3) (2)  +  (-4) (-3)  +  (-1) (1)  +  (2) (1) 

                             =  – 5 – 6 + 12 – 1 

                             =  2 

2. Find the norm of a vector 3i + 4j + 5k 

Solution: 

                     Let the vector  ψ  =  3i + 4j + 5k, 

Then                                (ψ, ψ)  =  (3i + 4j +5k)∙ (3i + 4j +5k) 
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                                                   = 9 + 16 + 25 

                                                   = 50 

                                        || ψ|| =  (ψ, ψ)1 /2 =  (50)1/2 

1.6 Orthogonality: 

 Two vectors x , y in R n are orthogonal or perpendicular if  x · y = 0. Notation: x ⊥ y means   

                                                x · y = 0. 

 

Orthogonal of Unit vector: 

                    Number of vectors that are mutually perpendicular to each other, meaning they form 

an angle of   90° with a magnitude of one unit with each other, are called orthogonal unit vectors. 

1.7 The Gram-Schmidt orthogonalization process: 

                  Let V be a vector space with an inner product. Suppose x1, x2, . . . , xn is a basis for V.                          

  Let                                    v1 = x1, 

                                          v2 = x2 – ( < x2, v1  > / <  v1, v1  > ) v1, 

                                          v3 = x3 – ( < x3, v1  > / <  v1, v1  > ) v1 – ( < x3, v2 > /<  v2, v2 > ) v2, 

                                            . 

                                          . 

                                           . 

                                           . 

               vn = xn – (<  xn, v1 > /<v1, v1> ) v1 − · · · − ( < xn, vn  > /<  vn, vn> ) vn,< vn−1, vn−1 > vn−1.  

                            Then v1, v2, . . . , vn is an orthogonal basis for V. 

1.8  Properties of the Gram-Schmidt process: 

                                     • vk = xk − (α1x1 + · · · + αk−1 xk−1), 1 ≤  k ≤ n;  

                                    • the span of v1, . . . , vk is the same as the span of x1, . . . , xk ; 

                                    • vk is orthogonal to x1, . . . , x k−1; 

                                    • vk = xk − pk , where pk is the orthogonal projection of the vector xk on the 

subspace spanned by x1, . . . , xk−1; 

                                    • vk is the distance from xk to the subspace spanned by x1, . . . , xk−1. 

                            An alternative form of the Gram-Schmidt process combines orthogonalization 

with normalization. Suppose x1, x2, . . . , xn is a basis for an inner product space V. 



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

9                                                  Mathematical Physics 
 

                      Let v1 = x1,                                                       w1 =  
𝑉1

|𝑉1|
 

                       v2 = x2 −  <x2, w1>  w1,                                   w 2 =   
𝑉2

|𝑉2|
 

                        v3 = x3 −  <x3, w1>  w1 −  <x3, w 2>  w2,        w3 =   
𝑉3

|𝑉3|
        

                                                        . 

                                                        . 

                                                       .  

                      vn = xn − < xn, w1 > w1 − · · · − < xn, wn −1 > wn−1,    wn = vn /|vn| . 

 Then w1, w2, . . . , wn is an orthonormal basis for V. 

Example 

  Let Π be the plane in R 3 spanned by vectors x1 =  (1, 2, 2) and x2 =  (−1, 0, 2). 

               (i) find orthonormal basis for Π. 

               (ii)  Extend it to an orthonormal basis for R 3 . x1, x2 is a basis for the plane Π. 

Solution: 

                     We can extend it to a basis for R 3 by adding one vector from the standard basis. For 

instance, vectors x1, x2, and x3 = (0, 0, 1) form a basis for R 3 because      

                                        

                            [
1 2 2

−1 0 2
0 0 1

]    =   |
1 2

−1 0
|     =  2  (not equal to zero) 

                           Using the Gram-Schmidt process, we orthogonalize the basis 

                                   x1  =  (1, 2, 2), 

                                   x2  =  (−1, 0, 2), 

                                   x3  =  (0, 0, 1) 

                                   v1 =  x1 = (1, 2, 2),  

              v2 =  x2 – ( <  x2, v1 > / < v1, v1> ) v1 

                        =  (−1, 0, 2) − 3 9 (1, 2, 2) 

                         =  (−4/3, −2/3, 4/3),  

              v3 =  x3 – ( < x3, v1 >/< v1, v1 >) v1 – ( < x3, v2> /< v2, v2 >) v2 

                                          =  (0, 0, 1) − 2 9 (1, 2, 2) − 4/3 4 (−4/3, −2/3, 4/3) 

                                          =  (2 / 9,   −2 / 9,   1 / 9).  
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              Now v1 = (1, 2, 2),  

                        v2 = (−4/3,  −2/3,   4/3), 

                        v3 = (2/9,  −2/9,  1/9)  is an orthogonal basis for  R 3 while v1, v2 is an orthogonal 

basis for Π.                    

                  It remains to normalize these vectors.  

                          < v1, v1 >  =  9 =  ⇒ |v1| = 3  

                          < v2, v2 >  =  4 = ⇒ |v2| = 2 

                          < v3, v3 >  =  1/9 = ⇒ |v3| = 1/3  

              W1 = v1/|v1| = (1/3, 2/3, 2/3) = 1/3 (1, 2, 2), 

               w2 = v2/|v2| = (−2/3, −1/3, 2/3) = 1/3 (−2, −1, 2), 

               w3 = v3/|v3| = (2/3, −2/3, 1/3) = 1/3 (2, −2, 1).  

              w1, w2 is an orthonormal basis for Π. w1, w2, w3 is an orthonormal basis for R 3 .  

1.9 Linear Operator: 

                A linear operator is a function that maps one vector onto other vectors. They can be 

represented by matrices, which can be thought of as coordinate representations of linear 

operators  ( Hjortso & Wolenski, 2008). Therefore, any n x m matrix is an example of a linear 

operator. 

A linear operator is usually (but not always) defined to satisfy the conditions of additivity and 

multiplicativity. 

• Additivity:   f (x + y) = f(x) + f(y) for all x and y, 

• Multiplicativity:   f (cx)  =  cf (x) for all x and all constants c. 

 

1.10 Dual space: 

                    All linear transformations from one vectors space V into another vector space W is 

denoted as V(V, W). Its particular case arises when we choose W = 𝔽 (as a one-dimensional 

coordinate vector space over itself. 

https://www.statisticshowto.com/types-of-functions/
https://www.statisticshowto.com/vector-function/
https://www.statisticshowto.com/matrices-and-matrix-algebra/
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 Let V = C be the set of all complex numbers over the field C (itself). We consider the involution 

operation 

                          J: C↦C              J (x + jy ) =  z*= x− jy. 

So J maps the complex plane into itself by swapping it with respect to the abscissa (called the 

real axis in C). Note that we denote complex conjugate by z* instead of over line notation 

                             𝑧̅ = 𝑥 + 𝑗𝑦̅̅ ̅̅ ̅̅ ̅̅   = x – jy            

                   As you see, the asterisk notation is in agreement with notation of dual spaces. 

When V is considered as a complex vector space, then complex conjugate convolution is not a 

linear operation because 

                             J (c z)  =  c∗z∗,   c ∈ C. 

However, when V = ℂ is considered as a vector space over the field of real numbers, J is a linear 

transformation. 

1.11Basis: 

  Let V be a vector space.  A collection of vectors 𝛼1,  𝛼2, 𝛼3,  ………. 𝛼r is said to form a basis of 

V if 𝛼1,  𝛼2, 𝛼3,  ………. 𝛼r  linearly independent and if they generate V. 

Change of basis: 

Here we will illustrate the change in O basis by the following: 

Let the coordinate of the point A be (4, 5). 

If two persons X and Y want to go from O to A. 

              Person X starts from O and uses the path OB and BA accordingly he has to go 

first four steps along OX and then five steps parallel to  y – axis to reach A. 

              Person Y  starts from o and uses the path OC and then CA accordingly  he has to 

go first 5 steps along OY – axis and then 4 steps parallel to X axis to reach A. 

                Here both the person reach A by using different paths. 

                The only difference is in change of order of the paths.  These paths are 

expressed in the standard basis of  R2. 

S1  =  { (1,0) ,(0,1)}         

S1  =  { (0,1) ,(1,0)}         

                        Path 1 =  (4, 5)  =  4 (1,0)  +  5(0,1) 

                        Path 2 = (4, 5)  =  5 (0,1)  +  4(1,0) 
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   In path 1 and 2 the coefficients are actually directions in terms of the standard basis of R2 .  

now, the vector order is important in a basis.  Here the direction vectors or coordinates vectors 

are [
4
5

] and  [
5
4

]  

     The vector can be expressed in form of matrix are [
4
5

] = [
1 0
0 1

]  [
4
5

] 

                                                                                      [
4
5

] = [
1 0
0 1

]  [
5
4

] 

We can express any vector by using standard basis easily, but we have to describe the given 

vector in term of different basis. 

Example: 

          Let X  =  ( 4, 5) in R2 , find the coordinate vector for X with respect to the basis 

                              A  =  { (1,1) ,(-1,2)}    

Solution:      

(4, 5 )  =  𝐶1 (1,1) + 𝐶2 (-1,2) 

          =  (𝐶1, 𝐶1) + (-𝐶2, 2𝐶2) 

          =  (𝐶1 − 𝐶2    , 𝐶1  + 2𝐶2 ) 

Here,  𝐶1 −  𝐶2    = 4 𝐶1  + 2𝐶2 = 5 

On solving, we get    𝐶1  = 
13

3
 , 𝐶2    =  

1

3
 

The coordinate vector for X with respect to A is    [X]A  =   (  
13

3
,   

1

3
  ) 

1.12 Isomorphism of vector space 

                  Two vector spaces V and W over the same field F are isomorphic if there is a bijection 

T : V → W which preserves addition and scalar multiplication, that is, for all vectors u and v in 

V , and all scalars  

                              c ∈ F, T (u + v) = T (u) + T (v) and  

                              T (cv) =  c T(v).  

          The correspondence T is called an isomorphism of vector spaces. When T : V → W is an 

isomorphism we’ll write T : V '→ W if we want to emphasize that it is an isomorphism. When V 

and W are isomorphic, but the specific isomorphism is not named, we’ll just write V ∼= W. 
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                       Of course, the identity function  IV : V '→ V is an isomorphism. After we introduce 

linear transformations (which is what homomorphisms  of vector spaces are called), we’ll have 

another way to describe isomorphisms.   

                          Since the structure of vector spaces is defined in terms of addition and scalar 

multiplication, if T preserves them, it will preserve structure defined in terms of them. For 

instance, T preserves 0, negation, subtraction, and linear transformations. 

1.13 Projection Operator: 

Suppose that A is an m×n real matrix of rank n (full column rank). Then the matrix  

                 P = A (ATA)-1AT represents the orthogonal projection of Rm onto the range of A (span 

of the column space).  

            If A is not a full column rank matrix, then ATA is not invertible. Thus, we get another 

criterion for consistency of the linear algebraic equation Ax = b: 

Pb = b, 

where P is the projection operator on the column space of an m×n real matrix. 

1.14 Eigen values and Eigen functions: 

 Let ,                             AX = Y                                                           ------------(1) 

 Where A is the matrix, X is the column vector and Y is also column vector. 

Here column vector X is transformed into the column vector Y by means of the square  matrix A. 

  Let x be a such vector which transforms into 𝜆𝑋  by means of the transformation (1).  Suppose, 

the linear transformation Y = AX transforms X into a scalar multiple of itself i.e., 𝜆𝑋. 

AX = Y = 𝜆𝑋 

AX – 𝜆 𝐼𝑋 = 0 

(A - 𝜆𝐼)X = 0     ---------------(2) 

Thus  unknown scalar 𝜆 is known as eigen value of the matrix A and the corresponding non zero 

vector X as eigen vector. 
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1.15 Direct sum of vector sub – space: 

                  A vector space V is said to be the direct sum of two of its sub space w1 and w2 , written 

as V = w1 , if each element of V is uniquely expressible as sum of an element of w1  and an 

element of w2 

                                       In this case, w1 and w2 are said to be complementary sub space. 

                            The above definition can be extended for more than two sub space. 

        Thus, V = w1 ⊕ w2 ⊕  ……………….. wn  each 𝛼 ∈   V  is uniquely expressible as 

                                                             𝛼 =  𝛼1 + 𝛼2 + ……………..+ 𝛼n 

Where 𝛼I ∈ 𝑊I for each i  = 1, 2,…..n 

               The following theorem gives criteria for a vector space to be the direct sum of two of its 

sub space. 

 Theorem:  

                     The necessary and sufficient conditions for a vector space V (F) to be the direct sum 

of its subspace w1 and w2 are 

(i)  V = w1 +w2 

(ii)  w1 ∩ w2 =  (0) 

1.16 Orthogonal transformation: 

                    A transformation Y = AX is said to be orthogonal if its matrix is orthogonal. 

Theorem: 

        A linear transformation preserves lengths, if it preserves inner product. 

Proof: 

Let the linear transformation is 

                                                      Y = AX  

Let X1 and X2 be any two vectors whose images are Y1  and Y2 respectively. 

Y1 = AX1  

Y2 = AX2  

                                 Now     |𝑋1
2 + 𝑋2

2 |2 = |𝑋1
2| + |𝑋2

2| + 2. X1 X2 

                                               X1 X2 = 
1

2
 [ |𝑋1

2 + 𝑋2
2 |^2 − |𝑥1|2 - |𝑥2|2 ] 

                 Similarly,         Y1 Y2 = 
1

2
 [ |𝑌1

2 + 𝑌2
2 |^2 − |𝑦1|2 - |𝑦2|2 ] 
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                     From the above results, the given linear transformation preserves length if and only 

if it preserves the inner product.  

 

Theorem: 

                   A linear transformation preserves lengths if and only if its matrix is orthogonal. 

Proof: 

  Let X1 and X2  be two vectors and Y1 , Y2 be their images respectively 

Y1 = AX1  

                                                     Y2  =  AX2 

                                 (Y1  . Y2) = 𝑌1
𝑇 Y2 = (𝐴𝑋1)𝑇(𝐴𝑋2) 

                                                             = 𝑋1
𝑇𝐴𝑇 𝐴𝑋2 

                                                             = 𝑋1
𝑇  I 𝑋2 

                                                             = 𝑋1
𝑇   𝑋2 

                                                             = (𝑋1 , 𝑋2) 

Thus, the linear transformation preserves the inner product and therefore it preserves length. 
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UNITII:   COMPLEX ANALYSIS, PROBABILITY&STATISTICS 

Review of Complex Numbers - de Moivre’s Theorem-Functions of a Complex Variable- 

Differentiability - Analytic functions- Harmonic Functions - Complex Integration- Contour 

Integration, Cauchy – Riemann conditions – Singular points – Cauchy’s Integral Theorem and 

integral Formula -Taylor’s Series - Laurent’s Expansion  - Zeros and poles – Residue theorem.  

Probability – Introduction – Addition rule of probability – Multiplication law of probability–

Problems – Introduction to statistics – Mean,  median, mode and standard deviations. 

2.1 Complex Number: 

A number of the form a + i b is called a complex number when a and b are real numbers 

and i = −1 . We call ‘a’ the real part and ‘b’ the imaginary part of the complex number a + ib. If 

a = 0 the number i b is said to be purely imaginary, if b = 0 the number a is real. 

A complex number x + iy is denoted by z. 

2.2 DE MOIVRE’S THEOREM (By Exponential Function) 

                                   (cos  + i sin )n = cos n  + i sin n  

Proof.    

We know that  𝑒𝑖𝜃   = cos  + i sin  

                                                  (𝑒𝑖𝜃 ) = (cos  + i sin ) 

                                                𝑒𝑖𝑛𝜃     =  (cos  + i sin )n 

                                                (cos n  + i sin n ) =  (cos  + i sin )n                             Proved. 

            If n is a fraction, then cos n  + i sin n  is one of the values of (cos  + i sin ) 

2.3 DE MOIVRE’S THEOREM (BY INDUCTION) 

Statement:  

               For any rational number n the value or one of the values of 

                                               (cos  + i sin )n = cos n  + i sin n  

Case I: 

                           Let n be a non-negative integer. By actual multiplication, 

(cos  + i sin )  (cos  + i sin ) = (cos  cos  – sin  sin )+                                         

                                                                                               i(cos  sin  + sin  cos ) 

                                                                   = cos ( + ) + i sin ( + ) 

Similarly we can prove that 
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           (cos  + i sin ) (cos  + i sin ) (cos  + i sin )     = cos ( +  + ) +  

                                                                                                        i sin  ( +  +  ) 

Continuing in this way, we can prove that 

(cos  + i sin ) (cos  + i sin ) ... (cos n + i sin n)= cos ( +  ... + n) +  

                                                                                                 i sin ( +   + ... +  n) 

              Putting  =  =  = ... n = , we get 

                           (cos  + i sin )n  =    (cos n  + i sin n ) 

Case II: 

                              Let n be a negative integer, say n = – m where m is a positive integer. Then, 

                   (cos  + i sin )n = (cos  + i sin ) - m 

                                               = 1/(cos  + i sin ) m 

                                               = 1/(cos m + i sin m)                        [By case I] 

                                        =  (1/(cos m +  i sin m).( (cos m  - i sin m )  (cos m  − i sin m ) ) 

                                                = (cos m - i sin m) / (cos2 m + sin 2m) 

                                                =  cos m − i sin m 

                                                 = cos (- m) + i sin (- m) 

                                                = cos n  + i sin n  

Hence, the theorem is true for negative integers also. 

Case III: 

               Let n be a proper fraction p/q. Where p and q are integers. Without loss of generality 

we can select q to be positive integer, p may be a positive or negative integer. Since q is a 

positive integer. 

                    (𝑐𝑜𝑠
𝜃

𝑞
+ ⅈ 𝑠ⅈ𝑛

𝜃

𝑞
)

𝑞

= 𝑐𝑜𝑠 𝑞 ⋅
𝜃

𝑞
+ ⅈ 𝑠ⅈ𝑛 𝑞 ⋅

𝜃

𝑞
 

                                                   =  cos  + i sin  

Taking the q th root of both sides, we get 

                                    (cos +  i sin )1/q = 𝑐𝑜𝑠
𝜃

𝑞
+ ⅈ 𝑠ⅈ𝑛

𝜃

𝑞
 



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

18                                                  Mathematical Physics 
 

Raising both sides to the power p, 

                       (cos  + i sin ) p/q    = 𝑐𝑜𝑠
𝜃

𝑞
+ ⅈ 𝑠ⅈ𝑛

𝜃

𝑞
 

                                                                                 =   cos 𝑝 ⋅
𝜃

𝑞
+ ⅈ 𝑠ⅈ𝑛 𝑝 ⋅

𝜃

𝑞
                  [By case I and II] 

Hence, one of the values of  (cos  + i sin ) n is cos n  + i sin n  when n is a proper fraction. 

Thus, the theorem is true for all rational values of n. 

Example: 

Express   

(𝑐𝑜𝑠 𝜃+𝑖 𝑠𝑖𝑛 𝜃)8

(𝑠𝑖𝑛 𝜃+𝑖 𝑐𝑜𝑠 𝜃)4
         in the form (x + iy). 

Solution: 

(𝑐𝑜𝑠 𝜃+𝑖 𝑠𝑖𝑛 𝜃)8

(𝑠𝑖𝑛 𝜃+𝑖 𝑐𝑜𝑠 𝜃)4
    =   

(𝑐𝑜𝑠 𝜃+𝑖 𝑠𝑖𝑛 𝜃)8

𝑖4(𝑠𝑖𝑛 𝜃+
1

𝑖
𝑐𝑜𝑠 𝜃)

4 

                         =      
(𝑐𝑜𝑠 𝜃+𝑖 𝑠𝑖𝑛 𝜃)8

(𝑐𝑜𝑠 𝜃−𝑖 𝑠𝑖𝑛 𝜃)4
 

                         =      
(𝑐𝑜𝑠 𝜃+𝑖 𝑠𝑖𝑛 𝜃)8

(𝑐𝑜𝑠(− 𝜃)+𝑖 𝑠𝑖𝑛(− 𝜃))4
 

                          =       
(𝑐𝑜𝑠 𝜃+𝑖 𝑠𝑖𝑛 𝜃)8

[(𝑠𝑖𝑛 𝜃+𝑖 𝑐𝑜𝑠 𝜃)−1]4  
                 =   

(𝑐𝑜𝑠 𝜃+𝑖 𝑠𝑖𝑛 𝜃)8

(cos 𝜃+𝑖 𝑠𝑖𝑛 𝜃)4
    

                         =       (cos  + i sin ) 12 

                                     =      cos 12  + i sin 12                                

2.4 Function of complex variables: 

The theory of functions of a complex variable is of atmost importance in solving a large 

number of problems in the field of engineering and science. Many complicated integrals of real 

functions are solved with the help of functions of a complex variable. 

x + iy is a complex variable and it is denoted by z. 
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                            (1)     z = x + iy where i  = −1  (Cartesian form) 

                            (2)      z = r (cos θ + i sin θ)     (Polar form) 

                            (3)       z = r𝑒𝑖𝜃               (Exponential form) 

                       f (z) is a function of a complex variable z and is denoted by w. 

                                          w = f (z) 

                                           w = u + iv 

                             where u and v are the real and imaginary parts of f (z). 

2.5 Differentiability: 

Let f (z) be a single valued function of the variable z, then 

𝑓′(𝑧) = 𝑙ⅈ𝑚
𝛿𝑧→0

𝑓(2 + 𝛿𝑧) − 𝑓(𝑧)

𝛿𝑧
 

provided that the limit exists and is independent of the path along which dz → 0. 

            Let P be a fixed point and Q be a neighboring point.  The  point Q may approach P along 

any straight line or curved path. 

Example: 

Consider the function 

                f (z) = 4x + y + i(–x + 4y)  and discuss  df/dz 

Solution: 

here, f(z) = 4x + y + i(–x + 4y) = u + iv 

so  u = 4x + y and  v = – x + 4y 

f (z + z) = 4(x + x) + ( y + y)  i(x + x) + 4i( y + y) 

f (z + z) − f (z) = 4(x + x) + ( y + y) −i(x + x) + 4i( y + y) −4x − y + ix − 4iy 

                       = 4x + y − i x + 4iy 

𝑓(𝑧+𝛿𝑧)−𝑓(𝑧)

𝛿𝑧
  =  ( 4x + dy - i dx + 4idy) / (  dx+i  dy) 

                                (a) Along real axis: If Q is taken on the    horizontal line through P (x, y) 

and Q then approaches   P along this line, we shall have dy = 0 and dz = dx  

                                
𝛿𝑓

𝛿𝑧
=  

4𝛿𝑥 −  𝑖𝛿𝑥

𝛿𝑥
  =  4-i  

                (b) Along imaginary axis: If Q is taken on the vertical line through P and 

then Q approaches P along this line, we have 
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                                          z = x + iy = 0 + iy, dz = idy, dx = 0 

Putting these values in (1), we have 

                                
𝛿𝑓

𝛿𝑧
=

𝛿𝑦+4𝑖𝛿𝑦

𝑖𝛿𝑦
   =    i-1(1+4i)  = 4-i 

           (c) Along a line y = x : If Q is taken on a line y = x. z = x + iy = x + ix = (1 + i)x 

   dz =  (1 + i) dx and dy = dx 

On putting these values in (1), we have 

𝛿𝑓

𝛿𝑧
=

4𝛿𝑥 + 𝛿𝑥 − ⅈ𝑑𝑥 + 4ⅈ𝑑𝑥

𝛿𝑥 + ⅈ𝑑𝑥
 

                              =   
4+1−𝑖+4𝑖

1+𝑖
    

                              =   
5+3𝑖

1+𝑖
 

                              =  
5+3𝑖

1+𝑖
  

1−𝑖

1−𝑖
 

                                = 4-i 

       In all the three different paths approaching Q from P, we get the same values of 
𝛿𝑓

𝛿𝑧
 = 4-i 

In such a case, the function is said to be differentiable at the point z in the given region. 

2.6 Analytic function: 

           A function f (z) is said to be analytic at a point z0, if f is differentiable not only at z0 but at 

every point of some neighbourhood of z0. 

                  A function f (z) is analytic in a domain if it is analytic at every point of the domain. 

The point at which the function is not differentiable is called a singular point of the function. 

An analytic function is also known as “holomorphic”, “regular”, “monogenic”. 

                   Entire Function. A function which is analytic everywhere (for all z in the complex 

plane) is known as an entire function. 

For Example 

                      1. Polynomials rational functions are entire 

                       2. | z |2 is differentiable only at z = 0. So it is no where analytic. 

                Note: (i) An entire is always analytic, differentiable and continuous function. But           

convers is not true. 
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                        (ii) Analytic function is always differentiable and continuous. But converse is not 

true. 

                        (iii) A differentiable function is always continuous. But converse is not true 

 

THE NECESSARY CONDITION FOR F (Z) TO BE ANALYTIC 

                Theorem. The necessary conditions for a function f (z) = u + iv to be analytic at all the 

points in a region R are 

𝜕𝑢

𝜕𝑥
 =     

𝜕𝑣

𝜕𝑦
,     

𝜕𝑢

𝜕𝑦
  = - 

𝜕𝑣

𝜕𝑥
 

𝜕𝑢

𝜕𝑥
,    

𝜕𝑢

𝜕𝑦
,  

𝜕𝑣

𝜕𝑥
,  

𝜕𝑣

𝜕𝑦
  are continuous function. 

Example: 

                     Determine whether 1/z is analytic or not? 

Solution: 

Let                        w = f (z) = u + iv =1/z 

                                                      u+iv = 1/(x+iy) 

                               = 
𝑥−𝑖𝑦

𝑥2+𝑦2
 

Equating real and imaginary parts, we get 

                     u = 
𝑥

𝑥2+𝑦2
       v= 

−𝑦

𝑥2+𝑦2
 

                                                    
𝜕𝑢

𝜕𝑥
 = 

(𝑥2+𝑦2).1−𝑥.2𝑥

(𝑥2+𝑦2)2
     = 

𝑦−𝑥2

(𝑥2+𝑦2)2
     

                          
𝜕𝑢

𝜕𝑦
=  

−2𝑥𝑦

(𝑥2+𝑦2)2
 

𝜕𝑣

𝜕𝑥
=  

2𝑥𝑦

(𝑥2 + 𝑦2)2
 

𝜕𝑣

𝜕𝑦
=  

(𝑦2 − 𝑥2)

(𝑥2 + 𝑦2)2
 

                        
𝜕𝑢

𝜕𝑥
 =     

𝜕𝑣

𝜕𝑦
 and  

𝜕𝑢

𝜕𝑦
  = - 

𝜕𝑣

𝜕𝑥
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Thus C – R equations are satisfied. Also partial derivatives are continuous except at (0, 0). 

Therefore1/z is analytic everywhere except at z = 0. 

also                  
ⅆ𝑤

ⅆ𝑧
= −

1

𝑧2
 

This again shows that dw/dz  exists everywhere except at z = 0. Hence 1/z is analytic everywhere 

except at z = 0. 

 

 

2.7 HARMONIC FUNCTION  

                 Any function which satisfies the Laplace’s equation is known as a harmonic function. 

Theorem.  

If f (z) = u + iv is an analytic function, then u and v are both harmonic functions. 

Proof.  

Let f (z) = u + iv, be an analytic function, then we have 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
  ……………….(1) 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
  ……………(2) 

Differentiating (1) with respect to x, we get         
𝜕 2𝑢

𝜕𝑥2
=

𝜕2𝑣

𝜕𝑥𝜕𝑦
 ……………..(3) 

Differentiating (2) w.r.t. ‘y’ we have      
𝜕 2𝑢

𝜕𝑦2
= −

𝜕2𝑣

𝜕𝑦𝜕𝑥
 ………………….(4) 

Adding (3) and (4) we have      
𝜕 2𝑢

𝜕𝑥2
+

𝜕 2𝑢

𝜕𝑦2
=

𝜕 2𝑢

𝜕𝑦2
=

𝜕2𝑣

𝜕𝑥𝜕𝑦
−

𝜕2𝑣

𝜕𝑦𝜕𝑥
 

𝜕 2𝑢

𝜕𝑥
+

𝜕2𝑢

𝜕𝑦
= 0 

Similarly          
𝜕 2𝑣

𝜕𝑥2 +
𝜕 2𝑣

𝜕𝑦2 = 0 

               Therefore both u and v are harmonic functions. 

Such functions u, v are called Conjugate harmonic functions if u + iv is also analytic 

function. 
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2.8 Complex integration and counter integration: 

               

In case of real variable, the path of integration of  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is always along the x-axis from  

x = a to x = b.  but in case of complex function f (z) the path of the definite integral  ∫ 𝑓(𝑧)𝑑𝑧
𝑏

𝑎
 

can be along any curve from z = a to z = b. 

z = x + iy 

dz = dx + i dy               -----------(1) 

dz = dx if y = 0             -----------(2) 

dz = i dy  if x = 0         ------------(3) 

      in equation (1),(2) (3) the direction of dz are different. 

Its value depends upon the path (curve) of integration.  But the value of integral from a to b 

remains the same along any regular curve from a to b. 

                               In case the initial point and final point coincide so that c is closed curve, then 

this integral is called contour integral and is denoted by ∮ 𝑓(𝑧)𝑑𝑧.
𝑐

 

                   If f(z) = u(x,y) + iv (x,y), then since dz = dx + idy 

∮ 𝑓(𝑧)𝑑𝑧 = 
𝑐

 ∫ (𝑢 + ⅈ𝑣)(𝑑𝑥 + 𝑑𝑦)
𝑐

 

                  = ∫ (𝑢 𝑑𝑥 − 𝑣𝑑𝑦) + ∫ (𝑣𝑑𝑥 + 𝑢 𝑑𝑦)
𝑐𝑐

 

 Which shows that the evaluation of the line integral of a complex function can be reduced to the 

evaluation of two line integrals of real functions. 

2.9 Cauchy’s Reiman function: 

Let           f(x,y) = u(x,y) + iv (x,y)    ----------------(1) 

Where      z = x + iy                            ----------------(2) 

So           dz = dx + i dy                     -----------------(3) 

The total derivative of f with respect to z is then 

ⅆ𝑓

ⅆ𝑧
 = 

𝜕𝑓

𝜕𝑥
 
𝜕𝑥

𝜕𝑧
 + 

𝜕𝑓

𝜕𝑦
 
𝜕𝑦

𝜕𝑧
         -----------------(4) 

      = 
1

2
 (

𝜕𝑓

𝜕𝑥
− ⅈ

𝜕𝑓

𝜕𝑦
)            ------------------(5) 
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In terms of u and v, (5) becomes 

𝜕𝑓

𝜕𝑥
 = 

1

2
 ((

𝜕𝑢

𝜕𝑥
 + i 

𝜕𝑣

𝜕𝑥
) -i(

𝜕𝑢

𝜕𝑦
 +i

𝜕𝑣

𝜕𝑦
))        -----------(6) 

             = 
1

2
 ((

𝜕𝑢

𝜕𝑥
 + i 

𝜕𝑣

𝜕𝑥
) +(-i

𝜕𝑢

𝜕𝑦
 +

𝜕𝑣

𝜕𝑦
))          -----------------(7) 

Along the real or x – axis 
𝜕𝑓

𝜕𝑦
 = 0. So 

                             
𝜕𝑓

𝜕𝑧
 = 

1

2
 (

𝜕𝑢

𝜕𝑥
+ ⅈ

𝜕𝑣

𝜕𝑥
)            --------------(8) 

along the imaginary, or y − axis 
𝜕𝑓

𝜕𝑥
  = 0, so 

                             
𝜕𝑓

𝜕𝑧
 = 

1

2
 (−ⅈ

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
)      -----------(9) 

If f is complex differentiable, then the value of the derivative must be same for a given dz, 

regardless of its orientation.  Therefore, (8) must equal (9)     

                                   
𝜕𝑢

𝜕𝑥
    =  

𝜕𝑣

𝜕𝑦
               -----------(10) 

and                                  
𝜕𝑣

𝜕𝑥
    =  −

𝜕𝑢

𝜕𝑦
             --------------(11) 

these are known as the Cauchy  -  Reimann equations. 

 

 

2.10 Cauchy’s integral theorem: 

Statement: 

                            If a function (𝑧) is analytic and 𝑓′(𝑧) is continuous at every point inside and on a 

simple closed curve 𝐶, then ∫ 𝑧
𝑐

𝑑𝑧  = 0. 

Proof : 

Let the region enclosed by the curve 𝑅 and 

( 𝑧) = 𝑢 𝑥, 𝑦 + (𝑥, 𝑦)  with   𝑧 = 𝑥 + ⅈ𝑦 ⟹ 𝑑𝑧 = 𝑑𝑥 + idy 

 

∫ 𝑓(𝑧)
𝑐

𝑑𝑧  = ∫ 𝑢
𝑐

 + ⅈ𝑣 (𝑑𝑥 + ⅈ𝑑𝑦) 
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∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦) + ⅈ
𝑐

  ∫ (𝑣𝑑𝑥 + 𝑢𝑑𝑦)
𝑐

   

𝑆ⅈ𝑛𝑐𝑒 𝑓′ (𝑧) ⅈ𝑠 𝑐𝑜𝑛𝑡ⅈ𝑛𝑢𝑜𝑢𝑠 ,𝜕𝑢/𝜕𝑥, 𝜕𝑢/𝜕𝑦, 𝜕𝑣/𝜕𝑥, 𝜕𝑣/𝜕𝑦𝑎𝑟𝑒 𝑎𝑙𝑠𝑜 𝑐𝑜𝑛𝑡ⅈ𝑛𝑢𝑜𝑢𝑠 ⅈ𝑛 𝑅 

By applying Green’s theorem, 

                           ∫ (𝑃𝑑𝑥 + 𝑄𝑑𝑦)
𝑐

 = ∫ ∫ (
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

ⅆ𝑦
) 𝑑𝑥

𝑅

𝑑𝑦 in each integral 

𝑤𝑒 𝑜𝑏𝑡𝑎ⅈ𝑛                        ∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦)
𝑐

 = ∫ ∫ (−
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

ⅆ𝑦
) 𝑑𝑥

𝑅

𝑑𝑦 

                            ∫ (𝑣𝑑𝑥 + 𝑢𝑑𝑦)
𝑐

 = ∫ ∫ (
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

ⅆ𝑦
) 𝑑𝑥

𝑅

𝑑𝑦 

∫ 𝑓(𝑧)𝑑𝑧
𝑐

 = ∫ ∫ (
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

ⅆ𝑦
) 𝑑𝑥

𝑅

𝑑𝑦 + ⅈ ∫ ∫ (
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

ⅆ𝑦
) 𝑑𝑥

𝑅

𝑑𝑦 

Since (𝑧) is analytic, 𝑢 and 𝑣 satisfy CR- equations so the integrands of the two integral in 

right hand side of above equation vanishes and we get, 

∫ 𝑓(𝑧)𝑑𝑧

𝑐

= 0 

Hence, proved the theorem. 

2.10 Cauchy’s Integral Formula: 

Statement: 

If a function (𝑧) is analytic within  on a closed curve 𝐶 and if 𝑎 is any point inside 𝑐 then 

 

𝑓 (𝑎) = 
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧  

 

Proof:  

Let us consider the function   (𝑧)/𝑧 −   which is analytic at all points inside 𝐶, except at 𝑧 = 𝑎. 
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With point 𝑎 as center and radius 𝑟, draw a small circle 𝐶1 lying completely within 𝐶. (Figure) 

Since(𝑧)/ 𝑧−𝑎 is analytic in the region between 𝐶and 𝐶1 , we have by Cauchy’s theorem 

Since for any point 𝐶1 , 𝑧 − 𝑎 = 𝑟𝑒 ⅈ𝜃 ⟹ 𝑑𝑧= ⅈ𝑟𝑒 i𝜃𝑑𝜃 

∫
𝑓(𝑧)

𝑧 − 𝑎

𝑐

= ∫
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

𝑐1

 

                           = ∫
𝑓(𝑎+𝑟𝑒𝑖𝜃 )

𝑟𝑒𝑖𝜃  ⅈ𝑟𝑒𝑖θ𝑑θ
𝑐1

 

                            =  ⅈ ∫
𝑓(𝑎+𝑟𝑒𝑖𝜃 )

1
 𝑑θ

𝑐1

 

In the limit 𝐶1 shrinks to point 𝑎 ie., as    𝑟 → 0  𝑡h𝑒 ⅈ𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑎𝑝𝑝𝑟𝑜𝑎𝑐h𝑒𝑠 

 

This is Cauchy’s integral formula. 

Example:  

                 𝐹𝑜𝑟 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑣𝑎𝑟ⅈ𝑎𝑏𝑙𝑒 𝑧, 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑙𝑛 𝑧 ⅈ𝑛𝑡𝑜 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 ⅈ𝑚𝑎𝑔ⅈ𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡𝑠. 

Solution: 
𝑤𝑒 h𝑎𝑣𝑒 𝑧 = 𝑥 + ⅈ, 𝑢𝑠ⅈ𝑛𝑔 𝑥 = 𝑟𝑐𝑜𝑠𝜃 𝑎𝑛𝑑 𝑦 = 𝑟 𝑠ⅈ𝑛𝜃 

                             𝑧 = 𝑟𝑐𝑜𝑠𝜃 + 𝑟𝑠ⅈ𝑛𝜃 ⟹ 𝑟(𝑐𝑜𝑠𝜃 + ⅈ𝑠ⅈ𝑛𝜃) ⟹ 𝑟    

Where 𝑟 = 𝑥2 + 𝑦2 and 𝜃 = tan-1  (x/y) 

∴ ln 𝑧 = ln ( 𝑟𝑒𝑖𝜃 ) =    ln ( 𝑟) + ln (𝑒𝑖𝜃
) = ln √𝑥2 + 𝑦2 + i 𝜃 

                                    = (1/2) ln (x2+y2) + i tan -1 (x/y) 

Real part is  (1/2) ( 𝑥2 + 𝑦2) and the imaginary part is tan−1 (y / x) 

 
 

Example: 
                   Using Cauchy-Riemann condition show that 𝑊 = 𝑠ⅈ𝑛𝑧 is analytic 

Solution: 
                          𝑊 = 𝑠ⅈ𝑛𝑧 ⟹ sin 𝑥 + ⅈ𝑦 = 𝑠ⅈ𝑛𝑥 𝑐𝑜𝑠h𝑦 + ⅈ 𝑐𝑜𝑠𝑥 𝑠ⅈ𝑛h𝑦 

ⅈ𝑒.                        , 𝑢 = 𝑠ⅈ𝑛𝑥 𝑐𝑜𝑠h𝑦 ⟹𝜕𝑢/𝜕𝑥= 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠h𝑦 𝑎𝑛𝑑  

                                           𝜕𝑢/𝜕𝑦= 𝑠ⅈ𝑛𝑥 𝑠ⅈ𝑛h𝑦 
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                                     𝑣 = 𝑐𝑜𝑠𝑥 𝑠ⅈ𝑛h𝑦 ⟹𝜕𝑣/𝜕𝑦= 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠h𝑦 𝑎𝑛𝑑 

                                          𝜕𝑣/𝜕𝑥= −𝑠ⅈ𝑛𝑥 𝑠ⅈ𝑛h𝑦 

ⅈ𝑡 𝑠𝑎𝑡ⅈ𝑠𝑓ⅈ𝑒𝑠 𝐶𝑅 𝑒𝑞𝑢𝑎𝑡ⅈ𝑜𝑛𝑠 𝜕𝑢/𝜕𝑥 = 𝜕𝑣/ 𝜕𝑦  

                                                   𝜕𝑢/𝜕𝑦 = −𝜕𝑣/𝜕𝑥 

∴ 𝑊 = 𝑠ⅈ𝑛𝑧 ⅈ𝑠 𝑎𝑛𝑎𝑙𝑦𝑡ⅈ𝑐. 

2.11 TAYLOR’S SERIES METHOD 

                               Let us consider the first order differential equation 

                                                     
ⅆ𝑦

ⅆ𝑥
 = f (x, y) 

under the condition y = 0 for x = x0. 

On differentiating (1) again and again, we get         
ⅆ2𝑦

ⅆ𝑥2
  ,  

ⅆ3𝑦

ⅆ𝑥3
 ,  

ⅆ4𝑦

ⅆ𝑥4
       etc. 

On putting x = x0 and y = 0 in the above equations we get the values of 

                                                              
ⅆ𝑦

ⅆ𝑥
 ,  

ⅆ2𝑦

ⅆ𝑥2
 ,    

 ⅆ3𝑦

ⅆ𝑥3
  , 

ⅆ4𝑦

ⅆ𝑥4
    

substituting the values of y, y, y, y in Taylor’s series 

                 y  =  y0 + (x − x0) [y (x0)] +
(𝑥−𝑥0)2

2!
[𝑦′′(𝑥0)] + 

(𝑥−𝑥0)3

3!
[𝑦′′(𝑥0)] +  

Thus we can obtain a power series for y (x) in powers of (x − x0). 

Example: 

Using   Taylor’s series method, obtain the solution of dy/dx= 3 x + y2 and 

y = 1, when x = 0. Find the value of y for x = 0.1, correct to four places of decimals. 

Solution. 
 

   ⅆ𝑦

ⅆ𝑥
  = 3x  + y2 ………………(1) 

                            y  (0) = 1    ...  (2) 

Differentiating  (1)  w.r.t ‘x’, we get   
ⅆ2𝑦

ⅆ𝑥2     = 3 + 2y
ⅆ𝑦

ⅆ𝑥
 

𝑑3𝑦

𝑑𝑥3
  =  2𝑦

𝑑2𝑦

𝑑𝑥2
  +  2 (

𝑑𝑦

𝑑𝑥
)

2
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𝑑4𝑦

𝑑𝑥4
= 2𝑦

𝑑3𝑦

𝑑𝑥3
+ 2 (

𝑑𝑦

𝑑𝑥
)

1
𝑑2𝑦

𝑑𝑥2
+ 4 (

𝑑𝑦

𝑑𝑥
)

1 𝑑2𝑦

𝑑𝑥2
 

𝑑𝑦

𝑑𝑥
= 0 + (1)2 = 1 

𝑑2𝑦

𝑑𝑥2
= 3 + 2 (1)(1)  = 5 

𝑑3𝑦

𝑑𝑥3
= 2(1)(5)2(1)

2 = 12 

𝑑4𝑦

𝑑𝑥4
= 2(1)(12) + 2(1)(5) + 4(1)(5) = 54 

We know by Taylor’s series expansion 

y = y0 + (x − x0) [y (x0)] +
(𝑥−𝑥0)2

2!
[𝑦′′(𝑥0)] + 

(𝑥−𝑥0)3

3!
[𝑦′′(𝑥0)] +  

On substituting the value of y (0), y (0), y (0), y (0), yiv (0) etc.  

y =  + x+ +
(𝑥)2

2!
[(5)] + 

𝑥3

3!
[(12)] + + 

𝑥4

4!
[(54)] + 

y (0.1) = 1 + 0.1 +(5/2)(0.01) + 2 (0.001) +(9/4) (0.0001) +  

= 1 + 0.1 + 0.025 + 0.002 + 0.000225  

= 1.127225 

 

 

2.12 Laurents’s expansion: 

If required to expand f (z) about a point where f (z) is not analytic, then it  cam be expanded by 

Laurent series and not by Taylor’s series. 

Statement: 

                             If f (z) is analytic on c1  and c2 , and the annular region R bounded by the two 

concentric circles c1 and c2 of radii r1 and r2 (r2 < r1) and with centre at a, then for all z in R  

                                f (z) = a0  + a1 (z - a) + a2 (z - a)2 +…….+ 
𝑏1

𝑧−𝑎
 + 

𝑏2

(𝑧−𝑎)^2
 + …… 
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where             an = 
1

2𝜋𝑖
  ∫

𝑓(𝑤)

(𝑤−𝑎)𝑛+1
𝑐1

 dw, 

                       bn = 
1

2𝜋𝑖
  ∫

𝑓(𝑤)

(𝑤−𝑎)−𝑛+1
𝑐2

 dw. 

Example: 

                       Expand f (z) = 
1

(𝑧−1)(𝑧−2)
   for I < |z| < 2 

Solution: 

f (z) = 
1

(𝑧−1)(𝑧−2)
=  

1

(𝑧−2)
 - 

1

(𝑧−1)
 

in first bracket |z| < 2, we take out 2 as common and from second bracket z is taken out common 

as 1 < |z|. 

f (z)   =   - 
1

2
 (

1

1−
𝑧

2

) - 
1

𝑧
 (

1

1−
1

𝑧

)  

       =   - 
1

2
 (1 −

𝑧

2
)

−1
 - 

1

𝑧
 (1 −

1

𝑧
)

−1
 

       =  - 
1

2
 [ 1 + 

𝑧1

2
+ 

𝑧2

4
 + 

𝑧3

8
+ ⋯ ….] - 

1

𝑧
  [ 1 + 

1

𝑧
+ 

1

𝑧2
 + 

1

𝑧3
+ ⋯ ….] 

        =  - 
1

2
 -  

𝑧1

4
− 

𝑧2

8
 - 

𝑧3

16
+ ⋯ ….- 

1

𝑧
  -  

1

𝑧2
 - 

1

𝑧3
− ⋯ …. 

 

 

Example : 

               Find the Laurent series expansion of 

                              f (z) = 
1

(𝑧−1)(𝑧−2)
 valid for |z – 1| >1 

Solution: 

                              f  (z) = 
1

(𝑧−1)(𝑧−2)
=  

−1

(𝑧−2)
 + 

2

(𝑧−1)
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                                                   =  
−1

(𝑧−1)
 + 

2

(𝑧−1−1)
 

                                                       = 
1

(𝑧−1)
 + 

2

(𝑧−1)
 

1

1−
1

𝑧−1

  =  
1

(𝑧−1)
 + 

2

(𝑧−1)
  (1 −

1

𝑧−1
)

−1

 

                               =  
1

(𝑧−1)
 + 

2

(𝑧−1)
 [ 1 + 

1

𝑧−1
+  

1

(𝑧−1)2 + 
1

(𝑧−1)3 + ⋯ ….] 

                            =  
1

(𝑧−1)
 + 

2

(𝑧−1)
 + 

2

(𝑧−1)2 + 
2

(𝑧−1)3 +….. 

                            =  
1

(𝑧−1)
  + 

2

(𝑧−1)2 + 
2

(𝑧−1)3 +….. 

2.13 Residue theorem:  

                       If f (z) has a pole at z = a, then |f (z) | → ∞  as  z → a. 

Method of finding residues: 

(a) Residue at simple pole 

(i) If f (z) has a simple pole at z = a  then 

          Res f (a) = lim
𝑧 →𝑎

 (𝑧 − 𝑎)𝑓(𝑧) 

(ii)  If f (z) is of the form f (z) = 
𝜑(𝑧)

𝜓(𝑧)
 where  𝜓(𝑎) = 0 but 𝜑(𝑎) ≠ 0 

          Res (at z = a)  = 
𝜑(𝑧)

𝜓′(𝑧)
  

(b)  Residue at a pole of order n. 

                            If f (z) has a pole of order n at z =a then 

                                          Res (at z = a)  = 
1

(𝑛−1)!
 { 

ⅆ𝑛−1

ⅆ𝑧𝑛−1((z - a)n  f(z)) } 

(c)   Residue at a pole z = a of any order (simple or of order m) 

                         Res f (a) = coefficient of 
1

𝑡
 

(d)   Residue of f (z) at z = ∞ = lim
𝑧 →∞

(−𝑧 𝑓(𝑧)) 

                   The residue of f (z) at infinity = - 
1

2𝜋𝑖
 ∫ 𝑓(𝑧)𝑑𝑧

𝑐
 



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

31                                                  Mathematical Physics 
 

Example: 

                    Find the residue at z = 0 of z cos 
1

𝑧
 

Solution: 

Expanding the function in powers of 
1

𝑧
 , 𝑤𝑒 ℎ𝑎𝑣𝑒 

                                   z cos 
1

𝑧
  =   z [ 1 - 

1

1! 2 𝑧2  + 
1

4!  𝑧4  - ………….]  

                                            =   z - 
1

2𝑧
 + 

1

24𝑧3 - …………….. 

The  Laurent’s expansion about z = 0. 

The coefficient of  
1

𝑧
 in it is 

−1

2
 .   So the residue of  z cos 

1

𝑧
 at z = 0 is 

−1

2
 

2.14 PROBABILITY 

                        Probability is a concept which numerically measure the degree of uncertainty and 

therefore certainty of the occurrence of events.  If an event A can happen in m ways, and fail in n 

ways, all these ways being equally   likely to occur, then the probability of the happening of A is 

    = (Number of favorable cases) / (Total number of mutually exclusive and equally likely cases) 

                       =       
𝑚

𝑚+𝑛
 

and that of its failing is defined as   
𝑛

𝑚+𝑛
 

. 

If the probability of the happening  =  p 

                                                     p + q =  𝐶 + 
𝑛

𝑚+𝑛
  

                                                               = 
𝑚+𝑛

𝑚+𝑛
 = 1 

                                             Or   p  +  q  =  1 

DEFINITIONS 

                      1. Die : It is a small cube. Dots are . .. ... :: :.: ::: marked on its faces. Plural of 

thedie is dice. On throwing a die, the outcome is the number of dots on its upper face. 

                     2. Cards : A pack of cards consists of four suits i.e. Spades, Hearts, Diamonds and 

Clubs.Each suit consists of 13 cards, nine cards numbered 2, 3, 4, ..., 10, an Ace, a King, a 
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Queen and a Jack or Knave. Colour of Spades and Clubs is black and that of Hearts and 

Diamonds is red. Aces, Kings, Queens, and Jacks are known as face cards. 

                      3. Exhaustive Events or Sample Space : The set of all possible outcomes of a 

singleperformance of an experiment is exhaustive events or sample space. Each outcome is 

called a sample point. In case of tossing a coin once, S = (H, T ) is the sample space. Two 

outcomes   – Head and Tail – constitute an exhaustive event because no other outcome is 

possible. 

                   4. Random Experiment : There are experiments, in which results may be altogether 

different, even though they are performed under identical conditions. They are known as random 

experiments. Tossing a coin or throwing a die is random experiment 

                   5. Trial and Event : Performing a random experiment is called a trial and outcome 

is termed as event. Tossing of a coin is a trial and the turning up of head or tail is an event. 

                   6. Equally likely events : Two events are said to be ‘equally likely’, if one of them 

cannot be expected in preference to the other. For instance, if we draw a card from well-shuffled 

pack, we may get any card, then the 52 different cases are equally likely. 

                   7. Independent events : Two events may be independent, when the actual 

happening of one does not influence in any way the probability of the happening of the other. 

Example. The event of getting head on first coin and the event of getting tail on the 

second coin in a simultaneous throw of two coins are independent. 

                 8. Mutually Exclusive events : Two events are known as mutually exclusive, when 

the occurrence of one of them excludes the occurrence of the other. For example, on tossing of a 

coin, either we get head or tail, but not both. 

                 9. Compound Event : When two or more events occur in composition with each 

other, the simultaneous occurrence is called a compound event. When a die is thrown, getting a 5 

or 6 is a compound event. 

               10. Favourable Events : The events, which ensure the required happening, are said to 

be favourable events. For example, in throwing a die, to have the even numbers, 2, 4 and 6 

are favourable cases. 

               11. Conditional Probability : The probability of happening an event A, such that event 

B has already happened, is called the conditional probability of happening of A on the condition 

that B has already happened. It is usually denoted by P (A/B). 
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                  12. Odds in favour of an event and odds against an event    If number of 

favourable ways = m,     number of not favourable events = n 

                                  (i)   Odds in favour of the event = m / n 

                                       Odds against the event   = n / m 

               13. Classical Definition of Probability. If there are N equally likely, mutually, 

exclusive and exhaustive of events of an experiment and m of these are favourable, then the 

probability of the happening of the event is defined as  m / N.. 

                 14. Expected value. If p1, p2, p3 ... pn of the probabilities of the events x1, x2, x3 ... xn 

respectively then expected value 

                                   E (x) = p1 x1 + p2 x2 + p3 x3 +  + pn xn = ∑ 𝑝𝑟𝑥𝑟
𝑛
𝜈=  

Example:  

                         Find the probability of throwing  

(a)  5,       

(b) an even number with an ordinary six faced die. 

Solution. 

                       (a) There are 6 possible ways in which the die can fall and there is only one 

way of throwing 5. 

Probability =      
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑤𝑎𝑦𝑠

Total number of equally likely ways
 

                =    

                   (b) Total number of ways of throwing a die = 6 

                                       Number of ways falling 2, 4, 6 = 3 

                                       The required probability = 
3

6
   = 

1

2
    

Example: 

                        Find the probability of throwing 9 with two dice. 

Solution.  

                          Total number of possible ways of throwing two dice 

                                             =   6  6 = 36. 

Number of ways getting  9  

 i.e.     (3 + 6), (4 + 5), (5 + 4), (6 + 3) = 4 
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The required probability =   
4

36
 = 

1

9
 

Example: 

                 From a pack of 52 cards, one is drawn at random. Find the probability of getting a king. 

 

 Solution.  

                   A king can be chosen in 4 ways. But a card can be drawn in 52 ways. 

 The required probability    = 
4

52
   = 

1

13
       

2.15  ADDITION LAW OF PROBABILITY 

                              If p1, p2, ......, pn be separate probabilities of mutually exclusive events, then 

the probability P, that any of these events will happen is given by P = p1 + p2 + p3 + ...... + pn 

Proof. Let A, B, C,...... be the events, where probabilities are respectively p1, p2, ...... pn. 

Let n be the total number of favourable cases to either A or B or C or......... 

                                         = m1 + m2 + m3 + ...... + mn 

Hence P ( A + B + C) =   
m1+ m2 + m3+ ……+ mn

n
 

                                 =    
𝑚1

𝑛
 +

𝑚2

𝑛
+

𝑚3

𝑛
+

𝑚𝑛

𝑛
 

                                       = P  (A)  + P (B) + P (C) + ...... 

                               

                            P = p1 + p2 + p3 + ...... + pn  Proved 

 

 

NOT MUTUALLY EXCLUSIVE EVENTS 

Consider the case where two events A and B are not mutually exclusive. The probability 

of the event that either A or B or both occur is given as 

P (A  B) = P (A) + P (B) − P (A  B) 

Example . An urn contains 10 black and 10 white balls. Find the probability of drawing two 

balls of the same colour. 

Solution. Probability of drawing two black balls               =  10𝑐2
     20𝑐2
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    Probability of drawing two balls of the same colour  =   
10𝑐2

20𝑐2

 + 
10𝑐2

20𝑐2

 

                                                                                            = 2 
10c2

20c2

 

                                                     =  
9

19
 

Example: 

                   A bag contains four white and two black balls and a second bag contains three of 

each colour. A bag is selected at random, and a ball is then drawn at random from the bag 

chosen. What is the probability that the ball drawn is white ? 

Solution.  

                        There are two mutually exclusive cases, 

(i) when the first bag is chosen, 

(ii)  when the second bag is chosen. 

Now the chance of choosing the first bag is  
1

2
   and  if this bag is chosen, the probability of 

drawing a white ball is   
4

6
   Hence the probability of drawing a white ball from first bag is 

1

2
  x   

4

6
    =   

1

3
 

Similarly the probability of drawing a white ball from second bag is 

1

2
  x   

3

6
 =   

1

4
 

Since the events are mutually exclusive the required probability 

=   
1

3
   +   

1

4
    

=   
7

12
. 
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2.16 MULTIPLICATION LAW OF PROBABILITY 

               If there are two independent events the respective probabilities of which are known, 

then   the probability that both will happen is the product of the probabilities of their happening 

respectively. 

                                       cP (A)  P (B) 

Proof.  

Suppose A and B are two independent events. Let A happen in m1 ways and fail in n1 ways. 

                                                   P (A)   =    
𝑚1

𝑚1+𝑛1
 

Also let B happen in m2 ways and fail in n2 ways. 

                                                   P (B)   =  
𝑚2

   𝑚2+𝑛2
 

Now there are four possibilities 

A and B both may happen, then the number of ways       = m1 . m2. 

A may happen and B may fail, then the number of ways  = m1 . n2 

A may fail and B may happen, then the number of ways  = n1 . m2 

A and B both may fail, then the number of ways              = n1 . n2 

Thus the total number of ways = (m1+n1) (m2+n2) 

Hence the probabilities of the happening of both A and B 

                                                 P (AB)     =   
𝑚1.𝑚2

(𝑚1+𝑛1)(𝑚2+𝑛2 )
 

                                                          =   
𝑚1

𝑚1+𝑛1
    

𝑚2

𝑚2+𝑛2
 

                                                    =     P (A).P(B) 

Example: 

                       The probability that machine A will be performing an usual function in 5 

years’ time is   
1

4
   , while the probability that machine B will still be operating usefully at the 

end of the same period, is  
1

3
 . Find the probability in the following cases that in 5 years time: 

(i) Both machines will be performing an usual function. 

(ii) Neither will be operating. 
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(iii) Only machine B will be operating. 

(iv) At least one of the machines will be operating. 

Solution. 

P (A operating usefully)   =   
1

4
          q (A)   =   1- 

1

4
   =  

3

4
 

P (B operating usefully)   =   
1

3
           q (B)   =   1 - 

1

3
 = 

2

3
 

(i) P (Both A and B will operate usefully) = P (A) . P ()  

                                                                 =  
1

4
  x  

1

3
 = 

1

12
 

(ii) P (Neither will be operating)      = q (A) . q (B)  

                                                       =   
3

4
 x  

2

3
  =  

1

2
 

(iii)  P (Only B will be operating)         = p (B)  q (A) 

                                                                   =  
1

3
   x  

3

4
 =   

1

4
 

(iv) P (At least one of the machines will be operating) 

                                                                   = 1 − P = 1 − P  

                                                                   =1 - 
1

2
   =  

1

2
 

Example: 

                     There are two groups of subjects one of which consists of  5 science and 3 

engineering subjects and the other consists of 3 science and 5 engineering subjects. An unbiased 

die is cast. If number 3 or number 5 turns up, a subject is selected at random from the first group, 

otherwise the subject is selected at random from the second group. Find the probability that an 

engineering subject is selected ultimately. 

Solution: 

Probability of turning up 3 or 5 =   
2

6
  =  

1

3
 

Probability of selecting engineering subject from first group =   
3

8
 

Now the probability of selecting engineering subject from first group on turning up 3 or 5  
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                                                =   
1

3
  x   

3

8
 =   

1

8
 

Probability of not turning up 3 or 5   = 1 −  
1

3
   

=  
2

3
 

Probability of selecting engineering subject from second group =   
5

8
 

                                        =  
2

3
  x  

5

8
     

 =   
5

12
  

Probability of the selection of engineering subject   =   
1

8
   +  

5

12
    

 =   
13

24
      

2.17 Introduction of statistics: 

                 Statistics is a branch of science dealing with the collection of data, organising, 

summarising, presenting and analysing data and drawing valid conclusions and thereafter making 

reasonable decisions on the basis of such analysis. 

                     Frequency distribution is the arranged data, summarised by distributing it into 

classes or categories with their frequencies. 

                                          Wages of 100 workers 

Wages in Rs.                     0-10      10-20      20-30         30-40           40-50 

Numbers of workers            12          23            35              20               10 

                      Graphical representation. It is often useful to represent frequency distribution by 

means of a diagram. The different types of diagrams are 

1. Histogram 

2. Frequency polygon 

3. Frequency curve 

4. Cumulative frequency curve or give 

5. Bar chart 

6. Circles or Pie diagrams. 
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2.18 Average or measures of central tendency: 

An average is a value which is representative of a set of data. Average value may also be termed 

as measures of central tendency. There are five types of averages in common. 

(i) Arithmetic average or mean 

(ii) Median 

(iii) Mode 

                            (iv)   Geometric Mean 

                     (v)   Harmonic Mean 

 

 

Arithmetic mean: 

                                  If   x1, x2 ,x3, ...... xn are n numbers, then their arithmetic mean (A.M.) is 

defined by 

             A.M. =  
𝑥1+𝑥2 +𝑥3 +⋯……+𝑥𝑛 

𝑛
   =  

∑𝑥

𝑛
 

If the number x1 occurs f1 times, x2 occurs f2 times and so on, then 

             A.M. =  
𝑓1𝑥1+ 𝑓2 𝑥2 + 𝑓3 𝑥3 +⋯……+  𝑓𝑛 𝑥𝑛

𝑓1 +𝑓2 +𝑓3 +⋯…..+𝑓𝑛
  =  

∑𝑓𝑥

𝛴𝑓
 

This is known as direct method. 

Example: 

                  Find the mean of 20, 22, 25, 28, 30. 

Solution: 

             A.M.   =  
20+22+25+28+30

5
          

  =     
125

5
   

  =   
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Example .  

                      Find the mean of the following : 

Numbers 8 10 15 20 

frequncy 5 8 8 4 

 

Solution: 

                f x = 8  5 + 10  8 + 15  8 + 20  4 

                       = 40 + 80 + 120 + 80  

                        = 320 

              f = 5 + 8 + 8 + 4 = 25 

               A.M. =  
∑𝑓𝑥

𝛴𝑓
  

 = 
320

25
   

    A.M. =   

 Short cut method 

                   Let a be the assumed mean, d the deviation of the variate x from a. Then 

                 
∑𝑓ⅆ

𝛴𝑓
  = 

∑𝑓(𝑥−𝑎)

𝛴𝑓
  

= 
∑𝑓𝑥

𝛴𝑓
 - 

∑𝑓𝑎

𝛴𝑓
 

           
∑𝑓ⅆ

𝛴𝑓
 = A.M - 

𝑎∑𝑓

𝛴𝑓
  

= A.M  –  a 

                        A.M = a + 
∑𝑓ⅆ

𝛴𝑓
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Example  

                 Find the arithmetic mean for the following distribution 

class 0-10 10 – 20 20 - 30 30 - 40 40 - 50 

frequency 7 8 20 10 5 

Solution:  

                                                  Let assumed mean (a) = 25. 

Class 
Mid value 

x 

Frequency 

         Y 
x-25 = d F . d 

0 – 10 

10 – 20  

20 – 30 

30 – 40 

40 – 50 

5 

15 

25 

35 

45 

7 

8 

20 

10 

5 

-20 

-10 

0 

+10 

+20 

-140 

-80 

0 

+100 

+100 

Total  50  -20 

  

                                   A.M  =  a +  
∑𝑓ⅆ

𝛴𝑓
  

= 25 + 
−20

50
 

                                                = 24.6. 

 

Step deviation method 

                         Let a be the assumed mean,    i  the width of the class interval and 

                           D = 
𝑥−𝑎

𝑖
,               

              A.M = a + 
∑𝑓𝐷

𝛴𝑓
 i 
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Example: 

       Find the arithmetic mean of the data given above example 3 by step deviation method. 

Solution. 

                                                                                  a = 25 

Class 
Mid value 

x 

Frequency 

         Y 
D =

𝒙−𝒂

𝒊
  f. D 

0 – 10 

10 – 20  

20 – 30 

30 – 40 

40 – 50 

5 

15 

25 

35 

45 

7 

8 

20 

10 

5 

-2 

-1 

0 

+1 

+ 

-14 

-8 

0 

+10 

+10 

Total  50  -2 

 

                  A.M = a +  
∑𝑓𝐷

𝛴𝑓
 . i 

                       = 25 + 
−25

50
 x 10   

A.M   =  24.6 

2.19  Median: 

                   Median is defined as the measure of the central item when they are arranged in 

ascending or descending order of magnitude 

                . When the total number of the items is odd and equal to say n, then the value of 

1

2
(𝑛 + 1)th item gives the median. 

                    When the total number of the frequencies is even, say n, then there are two middle 

items, and so the mean of the values of   
1

2
 th  and  

1

2
(𝑛 + 1)th items in the median. 

 

Example: 

                Find the median of 6, 8, 9, 10, 11, 12, 13. 

Solution.  
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                     Total number of items = 7 

                   The middle item =  
1

2
 (7 + 1)th  =  4th 

                    Median   =  Value of the 4th item = 10 

              For grouped data, Median = l +  
(

1

2
)  (𝑁−𝐹)

𝑓
 i 

         where l is the lower limit of the median class, f is the frequency of the class, i is the width 

of the class-interval, F is the total of all the preceding frequencies of the median-class 

and N is total frequency of the data. 

 

Example  

Find the value of Median from the following data 

No. of days for which 

absent (less than) 
5 10 15  20 25 30 35 40 45 

No. of students 29 224 465 582 634 644 650 653 655 

Solution: 

                  The given cumulative frequency distribution will first be converted into ordinary 

frequency as under    

Class – Interval Cumulative frequency Ordinary frequency 

0 – 5 

5 -10 

10 – 15 

15 – 20 

20 – 25 

25 – 30 

30 – 35 

35 – 40 

40 – 45 

29 

224 

465 

582 

634 

644 

650 

653 

655 

29 = 29 

224 – 29 = 195 

465 – 224 = 241 

582 – 465 = 117 

634 – 582 = 52 

644 – 634 = 10 

650 – 644 = 6 

653 – 650 = 3 

655 – 653 = 2  

 

                                          Median = size of  
655

2
  or 327.5th item 
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327.5th item lies in 10–15 which is the median class. 

                                                        M  =  l + 
(

𝑁

2
)−𝐶

𝑓
 i 

                 Where   l stands for lower limit of median class, 

N stands for the total frequency, 

C stands for the cumulative frequency just preceding the median class, 

i stands for class interval 

f stands for frequency for the median class. 

                    Median   = 10 + 
(

655

2
)−224

241
  x 5 

                              =  10 + 2.15  

Median    =  12.15. 

2.20 MODE 

                         Mode is defined to be the size of the variable which occurs most frequently. 

Example  

                  Find the mode of the following items : 

                                          0, 1, 6, 7, 2, 3, 7, 6, 6, 2, 6, 0, 5, 6, 0. 

Solution.  

                 6 occurs 5 times and no other item occurs 5 or more than 5 times, hence the mode is 6.  

For grouped data,  

Mode = l +  
𝒇−𝐟−𝟏

𝟐𝒇− 𝐟−𝟏− 𝐟𝟏 
  i 

                where l is the lower limit of the modal class, f is the frequency of the modal class, i 

is the width of the class, f−1  is the frequency before the modal class and f1 is the frequency after 

the modal class. 

2.21 STANDARD DEVIATION 

                Standard deviation is defined as the square root of the mean of the square of the 

deviation  from the arithmetic mean. 
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S.D.  = 𝝈 =  
√∑𝒇(𝒙−𝒙̅)𝟐

∑𝒇
 

               Note. 1. The square of the standard deviation 2 is called variance. 

                         2. 2 is called the second moment about the mean and is denoted by 2. 

 

SHORTEST METHOD FOR CALCULATING STANDARD DEVIATION 

             We know that  2 =  
1

𝑁
  ∑f(x − x̅)2 

                                =  
1

𝑁
  ∑ f(x − a − x − a̅̅ ̅̅ ̅̅ ̅)2 

                                = 
1

𝑁
  ∑f(d − x − a̅̅ ̅̅ ̅̅ ̅)2        

  where  x – a = d 

                                     = 
1

𝑁
  ∑f 𝑑2 − 2(−a + x̅)2 

1

𝑁
  ∑fd(−a + x̅)2 1

𝑁
  ∑f ∑f  

 = 
1

𝑁
  ∑f 𝑑2 − 2(−a + x̅)2 

1

𝑁
  ∑f 𝑑1 + 2(−a + x̅)2 

       x̅ = 𝑎 + 
∑fd

𝑁
      or         x̅ − 𝑎 =  

∑fd

𝑁
 

                            2 = 
1

𝑁
  ∑f 𝑑2 - 2 

∑fd

𝑁
 

1

𝑁
  ∑fd + (

∑𝑓𝑑
𝑁⁄ )

2

 

                                 = 
1

𝑁
  ∑f 𝑑2 (

∑𝑓𝑑
𝑁⁄ )

2

 

S.D = √
∑𝐟𝐝𝟐

𝐍
− (

𝚺𝐟𝐝

𝐍
)

𝟐
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Example: 

       Calculate the mean and standard deviation for the following data : 

Size of item 6 17 8 9 10 11 12 

Frequency 3 6   9 13 8 5 4 

Solution: 

                                                  Assumed mean = 9 

x F D = x- a f.d  f. d 2 

6 

7 

8 

9 

10 

11 

12 

3 

6 

9 

13 

8 

5 

4 

-3 

-2 

-1 

0 

+1 

+2 

+3 

-9 

-12 

-9 

0 

8 

10 

12 

27 

24 

9 

0 

8 

20 

36 

 ∑f = 48  ∑f d = 0 ∑f d2 = 124 

 

                                               Mean = a +  
∑𝑓ⅆ

𝛴𝑓
  

= 9 + 0  

= 9 

                                          S.D. =  

√∑𝑓(𝑥−𝑥̅)2

∑𝑓
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                                                  =  √
∑fd2

N
− (

Σfd

N
)

2
 

                                      = 
√124

48
  

S.D   =  

 

Example: 

              From the following frequency distribution, compute the standard deviation of 100 

students : 

 

   

  

 

Solution: 

                                            Assumed mean = 67 

Mass in 

kg 

No. of 

students f 
x d = x - 67  f.d f. d 2 

  60 - 62 

63 – 65 

66 – 68 

69 – 71 

72 - 74 

          

5 

18 

42 

27 

       8 

 

61 

64 

67 

70 

73 

-6 

-3 

0 

3 

6 

 

-30 

          -54 

0 

81 

48 

180 

162 

0 

243 

288 

 ∑f = 100   ∑f d = 45 ∑f d 2 = 124 

 

                                 S.D =   √
𝛴𝑓 ⅆ2 

∑𝑓
− (

𝛴𝑓ⅆ

𝛴ⅆ
)

2
 

Mass in kg 60 - 62 63 – 65 66 - 68 69 - 71 72 - 74 

Number of students 5 18 42 27 8 
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                             =   √
873

100
− (

45

100
)

2
 

                                  =  √8.73 − 0.2025 

                          =  √8.5275 

                           S.D   = 2.9202. 

Example: 

            Compute the standard deviation for the following frequency distribution 

                       

 

 

Solution: 

                                                      Assumed mean = 6 

   

  Class 

interval 
 f X d = x - 6  f.d f. d2 

  0 – 4 

4 – 8 

8 – 12  

12 - 16 

        

4 

8 

2 

1 

 

2 

6 

10 

14 

-4 

0 

+4 

+8 

 

         -16 

0 

8 

8 

 

64 

0 

32 

64 

 ∑f = 15   ∑f d = 0 ∑f d2 = 160 

                   

                                       S.D =   √
𝛴𝑓 ⅆ2 

∑𝑓
− (

𝛴𝑓ⅆ

𝛴ⅆ
)

2
 

Class interval 0 - 4 4 - 8 8 - 12 12 - 16 

Frequency 4 8 2 1 
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                                  =   √
160

15
− (0)2 

                                    S.D   = 3.266 

 

                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

50                                                  Mathematical Physics 
 

UNIT III:   MATRICES 

 Types of Matrices and their properties, Rank of a Matrix-Conjugate of a matrix - Adjoint of a 

matrix - Inverse of a matrix - Hermitian and Unitary Matrices - Trace of a matrix- 

Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley–

Hamilton theorem –Diagonalization 

3.1 Types of Matrices and their properties 

               Let us consider a set of simultaneous equations, 

x + 2 y + 3 z + 5 t = 0 

4 x + 2 y + 5 z + 7 t = 0 

3 x + 4 y + 2 z + 6 t = 0. 

5 x + 7y + 9 z + 0 t = 0. 

Now we write down the coefficients of x, y, z, t of the above equations and enclose them within 

brackets and then we get         

                                       A = [

1 2 3 5
4 2 5 7
3 4 2 6
5 7 9 8

] 

               The above system of numbers, arranged in a rectangular array in rows and columns and 

bounded by the brackets, is called a matrix. 

                 It has got 3 rows and 4 columns and in all 3 × 4 = 12 elements. It is termed as 3 × 4 

matrix, to be read as [3 by 4 matrix]. In the double subscripts of an element, the first subscript 

determines the row and the second subscript determines the column in which the element lies, aij 

lies in the ith   row and jth column. 

3.2 VARIOUS TYPES OF MATRICES 

                     (a) Row Matrix. If a matrix has only one row and any number of columns, it is 

called a Row matrix,  e.g.,[2 7 3 9] 
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                     (b) Column Matrix. A matrix, having one column and any number of rows, is 

called a Column matrix, e.g., [

1
2
3
4

] 

                     (c) Null Matrix or Zero Matrix. Any matrix, in which all the elements are zeros, is 

called a Zero matrix or Null matrix e.g., 

                                                  [
0 0
0 0

] 

                    (d) Square Matrix. A matrix, in which the number of rows is equal to the number 

of columns, is called a square matrix e.g., 

                                                   [
1 7
7 4

] 

                   (e) Diagonal Matrix. A square matrix is called a diagonal matrix, if all its non-

diagonal elements  are zero e.g.,  

                                               [

1 0 0 0
0 2 0 0
0 0 5 0
0 0 0 8

] 

                        (f ) Scalar matrix. A diagonal matrix in which all the diagonal elements are equal 

to a scalar,  say (k) is called a scalar matrix. 

                       For example        [

−6 0 0 0
0 −6 0 0
0 0 −6 0
0 0 0 −6

] 

                      (g) Unit or Identity Matrix. A square matrix is called a unit matrix if all the 

diagonal elements are unity and non-diagonal elements are zero e.g., 

                                     [
1 0
0 1

], [

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

] 

                       (h) Symmetric Matrix. A square matrix will be called symmetric, if for all values 

of i and j, aij = aji i.e., A = A 

                                           [

𝑎 ℎ 𝑔
ℎ 𝑏 𝑓
𝑔 𝑓 𝑐

] 

                     (i) Skew Symmetric Matrix. A square matrix is called skew symmetric matrix, if 
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                                             (1) aij = – aji for all values of i and j, or A = –A 

                                             (2) All diagonal elements are zero, e.g.,  

                                                        [

0 −ℎ −𝑔
ℎ 0 −𝑓
𝑔 𝑓 0

] 

                   (j) Triangular Matrix. (Echelon form) A square matrix, all of whose elements 

below the  leading diagonal are zero, is called an upper triangular matrix. A square matrix, all of 

whose elements above the leading diagonal are zero, is called a lower triangular matrix 

                         e.g.,   [
1 7 9
0 5 2
0 0 6

]                                                      [
3 0 0
8 5 0
9 1 7

] 

                            Upper triangular matrix                         lower triangular matrix 

                     (k) Transpose of a Matrix. If in a given matrix A, we interchange the rows and 

the corresponding columns, the new matrix obtained is called the transpose of the matrix A and 

is denoted by A or AT
 

                         e.g.,  A = [
2 3 4
1 0 5
6 7 8

]            A’ = [
2 1 6
3 0 7
4 5 8

]       

                        (l) Orthogonal Matrix. A square matrix A is called an orthogonal matrix if the 

product of the  matrix A and the transpose matrix A’ is an identity matrix e.g., 

                                                            A. A = I 

                                                        If  | A | = 1, matrix A is proper. 

                          (m) Conjugate of a Matrix  

                                               A =    [
1 + ⅈ 2 − 3ⅈ

7 + 2ⅈ −ⅈ
]        

                      Conjugate of matrix A is 𝐴̅ 

                                              𝐴̅   =      [
1 − ⅈ 2 + 3ⅈ

7 − 2ⅈ +ⅈ
]      

                     (n) Matrix A. Transpose of the conjugate of a matrix A is denoted by A   

                                             A    = [
1 + ⅈ 2 − 3ⅈ              4

7 + 2ⅈ          −ⅈ               3 − 2ⅈ 
] 

                                               𝐴̅   = [
1 − ⅈ 2 + 3ⅈ              4

7 + 2ⅈ         +ⅈ               3 + 2ⅈ 
] 
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                                          (  𝐴̅ )’ =   [
1 − ⅈ 7 − 2ⅈ

2 + 3ⅈ ⅈ
4 3 + 2ⅈ

] 

                                                     

                                       A  = [
1 − ⅈ 7 − 2ⅈ

2 + 3ⅈ ⅈ
4 3 + 2ⅈ

] 

                           (o) Unitary Matrix. A square matrix A is said to be unitary if 

                                                                A A = I 

                                                      A =  [

1 + ⅈ −1 + ⅈ
2̅ 2̅

1+𝑖

2

1−𝑖

2

] 

                                                      A  =    [

1 − ⅈ +1 − ⅈ
2̅ 2̅

−1−𝑖

2

−1+𝑖

2

] 

                                                               A A =  I 

                          (p) Hermitian Matrix. A square matrix A = (aij) is called Hermitian matrix, if 

every i-jth element of A is equal to conjugate complex  j – i th element of A. 

                                              In other words, aij = 𝑎𝑖𝑗̅̅ ̅̅  

                                                    [
1 2 + 3ⅈ                 3 + ⅈ

2 − 3ⅈ 2                  1 − 2ⅈ
3 − ⅈ 1 + 2ⅈ                          5

] 

Necessary and sufficient condition for a matrix A to be Hermitian is that A = A i.e. conjugate 

transpose of A 

                                             A = (A). 

                             (q) Skew Hermitian Matrix. A square matrix A = (aij) will be called a Skew 

Hermitian matrix if every i-jth element of A is equal to negative conjugate complex of j-ith 

element of A. 

                                In other words, aij = −  𝑎𝑖𝑗̅̅ ̅̅  

All the elements in the principal diagonal will be of the form  

                                   aii = −   𝑎𝑖𝑖̅̅ ̅̅  
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                       or         aii +   𝑎𝑖𝑖̅̅ ̅̅ = 0 

                       If          aii = a + ib              

                    then        𝑎𝑖𝑖̅̅ ̅̅  = a − ib 

                        (a + ib) + (a – ib) = 0  

                                              2 a = 0   

                                                a = 0 

So, aii is pure imaginary  

                                                  aii = 0. 

Hence, all the diagonal elements of a Skew Hermitian Matrix are either zeros or pure imaginary. 

                                 [
ⅈ 2 − 3ⅈ                 4 + 5ⅈ

−(2 + 3ⅈ) 0               2ⅈ

−(4 − 5ⅈ) 2ⅈ                         − 3ⅈ
] 

                 The necessary and sufficient condition for a matrix A to be Skew Hermitian is that 

A = – A 

(A) = – A 

                                     (r) Idempotent Matrix. A matrix, such that A2 = A is called Idempotent 

Matrix. 

                                     e.g. A = [
2 −2 −4

−1 3 4
1 −2 −3

]          

                                            A2  =     [
2 −2 −4

−1 3 4
1 −2 −3

]    [
2 −2 −4

−1 3 4
1 −2 −3

]          

                                                  = [
2 −2 −4

−1 3 4
1 −2 −3

]       = A 

                                    (s) Periodic Matrix. A matrix A will be called a Periodic Matrix, if 

                                                       Ak+1 = A 

where k is a +ve integer. If k is the least + ve integer, for which Ak+1 = A, then k is said to 

be the period of A. If we choose k = 1, we get A2 = A and we call it to be idempotent 

matrix. 
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                                         (t) Nilpotent Matrix. A matrix will be called a Nilpotent matrix, if Ak 

= 0 (null matrix) where k is a +ve integer ; if however k is the least +ve integer for which kk = 0, 

then k is the index  of the nilpotent matrix. 

                   e.g = A =  [ 𝑎𝑏 𝑏2

−𝑎2 −𝑎𝑏
], 

                             A2  =  [
0 0
0 0

],  =  0 

A is nilpotent matrix whose index is 2. 

                         (u) Involuntary Matrix. A matrix A will be called an Involuntary matrix,  

if A2 = I (unit  matrix). Since I 2 = I always  Unit matrix is involuntary. 

                         (v) Equal Matrices. Two matrices are said to be equal if 

(i) They are of the same order. 

(ii) The elements in the corresponding positions are equal. 

                                      A =  [
2 3
1 4

] 

                                       B = [
2 3
1 4

] 

                                          A = B 

                         (w) Singular Matrix. If the determinant of the matrix is zero, then the 

matrix is known as  singular matrix  

                                       e.g. A =  [
1 2
3 6

] 

is singular matrix, because |A| = 6 – 6 = 0. 

3.3 Adjoint of matrix: 

               Let the determinant of the square matrix A be | A |. 

      If   A =[  

𝑎1  𝑎2 𝑎3

 𝑏1 𝑏2 𝑏3 
 𝑐1 𝑐2 𝑐3

]         |𝐴| = [

𝑎1 𝑎2 𝑎3

 𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3

]         

 The matrix formed by the co-factors of the elements in 

                                   | A | is  [
𝐴1 𝐴2 𝐴3

𝐵1 𝐵2 𝐵3

𝐶1 𝐶2 𝐶3

]         

                                              A1 = |
𝑏2 𝑏3

𝑐2 𝑐3
|  =  b2c3 – b3c2 
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                                              A2= |
 𝑏1 𝑏3 
 𝑐1 𝑐3

| =  b1c3 – b3c1 

                                              A3 = |
𝑏1 𝑏2

𝑐1 𝑐2
| = b1c2 – b2c1 

                                              B1 = |
𝑎2 𝑎3

𝑐2 𝑐3
| = a2c3 – a3c2 

                                              B2 = |
𝑎1 𝑎3

𝑐1 𝑐3
| = a1c3 – a3c1 

                                              B3 = |
𝑎1 𝑎2

𝑐1 𝑐2
| = a1c2 – a2c1 

                                              C1 = |
𝑎1 𝑎2

𝑏2 𝑏1
| = a1b1 – a2b2 

                                              C2 = |
𝑎1 𝑎3

𝑏1 𝑏3
| = a1b3 – a3b1 

                                               C3 = |
𝑎1 𝑎2

𝑏1 𝑏2
| = a1b2 – a2b1 

Then the transpose of the matrix of co-factors 

                                               [

𝐴1 𝐴2 𝐴3

𝐵1 𝐵2 𝐵3

𝐶1 𝐶2 𝐶3

]          

is called the adjoint of the matrix A and is written as adj A. 

3.4 INVERSE OF A MATRIX 

           If A and B are two square matrices of the same order, such that 

                                         AB  = BA = I (I = unit matrix) 

then B is called the inverse of A i.e. B = A–1 and A is the inverse of B. 

                Condition for a square matrix A to possess an inverse is that matrix A is non-singular, 

                                             i.e., | A |  0 

If  A is a square matrix and B be its inverse, then AB = I 

Taking determinant of both sides, we get | AB | = | I | or 

                                                              | A | | B | = I 

From this relation it is clear that | A |  0 

i.e.             the matrix A is non-singular. 
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To find the inverse matrix with the help of adjoint matrix 

We know that                   A . (Adj. A) = | A | I 

                                          A . 
1

|𝐴|
  (Adj. A) = I 

                                                         A . A-1 = I 

                                         A-1  =   
𝟏

|𝑨|
  (Adj. A) 

 

 

Example  

                  If A = [
3 −3 4
2 −3 4
0 −1 4

]         find   A-1 

 

 

Solution: 

                                                             A = [
3 −3 4
2 −3 4
0 −1 4

] 

                              | A | = 3 (– 3 + 4) + 3 (2 – 0) + 4 (– 2 – 0) = 3 + 6 – 8 = 1 

The co-factors of elements of various rows of | A | are 

                                       [
−3 + 4 −2 − 0 −2
3 − 4 3 − 0 3

−12 + 12 −12 + 8 −9 + 6
] 

Therefore, the matrix formed by the co-factors of 

                                  | A |  =  [
1 −2 −2

−1 3 3
0 −4 −3

] 

                              Adj. A  =  [
1 −1 0

−2 3 −4
−2 3 −3

] 

                                A-1  =   
𝟏

|𝑨|
  (Adj. A) 
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                                        = 1 [
1 −1 0

−2 3 −4
−2 3 −3

]   

                                       =     [
1 −1 0

−2 3 −4
−2 3 −3

] 

 

 

Example: 

       If A = 
1

9
  [

−8 1 4
4 4 7
1 −8 4

]  , prove that A–1 = A, A being the transpose of A. 

Solution: 

                            A = 
1

9
  [

−8 1 4
4 4 7
1 −8 4

] 

                                A =   
1

9
  [

−8 4 1
1 4 −8
4 7 4

]   

                                A A  =   
1

9
  [

−8 4 1
1 4 −8
4 7 4

]   
1

9
  [

−8 1 4
4 4 7
1 −8 4

] 

                                          = 
1

81
 [

64 + 1 + 16 −32 + 4 + 28 −8 − 8 + 16
−32 + 4 + 28 16 + 16 + 49 4 − 32 + 28
−8 − 8 + 16 4 − 32 + 28 1 + 64 + 16

] 

                                           =   
1

81
  [

81 0 0
0 81 0
0 0 81

] 

                                           = [
1 0 0
0 1 0
0 0 1

]    or    

                                A A   =    
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3. 5 RANK OF A MATRIX 

The rank of a matrix is said to be r if 

                                             (a) It has at least one non-zero minor of order r. 

                                              (b) Every minor of A of order higher than r is zero. 

      Note: (i) Non-zero row is that row in which all the elements are not zero. 

                (ii) The rank of the product matrix AB of two matrices A and B is less than the rank of 

either of the matrices A and B. 

 

Example  

         Reduce to normal form the following matrix  A =  [

1 2 −1 3

4 1 2 1

3 −1 1 2

1 2 0 1

] 

Solution: 

                           [

1 2 −1 3

4 1 2 1

3 −1 1 2

1 2 0 1

] ~  [

1 2 −1 3

0 7 6 −11

0 −7 4 −7

0 0 1 −2

] 

R2 → R2 – 4 R1 

R3 → R3 – 3 R1 

R4 → R4 –  R1 

                          [

1 0 0 0

0 −7 6 −11

0 −7 4 −7

0 0 1 −2

] ~  [

1 0 0 0

0 −7 6 −11

0 0 −2 4

0 0 1 −2

] 

R3 → R3 –  R2  

C2 → C2 – 2 C1 

C3 → C3 + C1 

C4 → C4 – 3C1 

                          [

1 0 0 0

0 −7 0 0

0 0 −2 4

0 0 1 −2

] ~  [

1 0 0 0

0 −7 0 0

0 0 −2 4

0 0 0 0

] 

          R4 → R4 +1/2 R3 
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           C3 → C3 + 6/7 C2 

           C4 → C4 – 11/7 C2 

                    [

1 0 0 0
0 −7 0 0
0 0 −2 0
0 0 0 −2

] ~  [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

] 

          R2 → -1/7 R2 

          R3 → -1/2 R3 

          C4 → C4 +2 C3 

                            Rank of              A = 3  

3.6 Eigen Values and Eigen Vectors: 

              For a square matrix 𝐴 of order 𝑛, the number 𝜆 is an eigenvalue if and only if there 

exists a  non-zero vector 𝑋 such that 

                                      𝐴 𝑋 = 𝜆 𝑋 

Using the matrix multiplication properties, we obtain (𝐴 − 𝜆 𝐼n) 𝑋 = 0 This is a linear system for 

which the matrix coefficient is 𝐴 −   . We also know that this system has one solution if and only 

if the matrix coefficient is invertible, i.e. (𝐴 − 𝜆 𝐼n) ≠ 0. Since the zero-vector is a solution and 𝑋 

is not the zero vector, then we have (𝐴 − 𝜆 𝐼n) = 0. In general, for a square matrix 𝐴 of order 𝑛, 

the equation 

(𝐴 − 𝜆 𝐼n) = 0  

                     ⅈ𝑒. ,                           |𝐴 − 𝜆 𝐼n | = 0 

       Will give the eigenvalues of 𝐴. This equation is called the characteristic equation or 

characteristic polynomial of 𝐴. It is a polynomial function  of degree 𝑛. So we know that this 

equation will not have more than n roots or solutions. So a square matrix 𝐴 of order n will not 

have more than n eigenvalues. 
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Example: 

  Find the eigen values eigen vector of the matrix  [
1 0 0
0 1 1
0 1 1

]     

Solution: 

                         Let 𝐴 =  [
1 0 0
0 1 1
0 1 1

]   and the characteristic equation is | 𝐴 – 𝜆 𝐼 | = 0 

                        | 𝐴 – 𝜆 𝐼 | =  [
1 0 0
0 1 1
0 1 1

]   -  𝜆 [
1 0 0
0 1 1
0 1 1

]    

                                     =  [
1 − λ 0 0

0 1 − λ 1
0 1 1 − λ

]    =  0 

(1 – λ) { (1 - λ)2 – 1}  = 0   

 (1 – λ) {1 + λ2- 2 λ – 1} = 0  

 (1 – λ)( λ – 2) λ = 0 

ie.,             λ   =     0, 1, 2 

The eigen values of the matrix A are 0, 1, 2 

And the eigen value equation is (𝐴 − 𝜆 𝐼) 𝑋 = 0 

Case 1 

     λ =0, the eigen value equation is  [
1 0 0
0 1 1
0 1 1

]   [

   𝑥1  
𝑥2

𝑥3

] =  [
0
0
0

] 

                                      we get  x1 = 0 

                                                  x2 + x3 =0 

                                                  x2 + x3 =0 

Solving these equations we get  x1 = 0     ;       x2 = −x3 

                                                          X1 =  [

𝑥1

𝑥2

 𝑥3 
] = [

𝑥1

𝑥2

𝑥3

] = [
0
𝑘

−𝑘
] 

To normalize the eigen vector it must be equated to unity |X1| =1, 

                                                       √02 + 𝑘2 + (−𝑘)2   = 1 
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                                                               √2𝑘2 = 1 

                                                                      K = 
1

√2
 

the normalized eigen vector of    matrix 𝐴 for 𝜆 =0 is {0,  
1

√2
,

1

√2
 } 

Case 2  

               𝜆 = 1, the eigen value equation is [
1 0 0
0 0 1
0 1 0

]   [

 𝑥1 
 𝑥2 
𝑥3

] =  [
0
0
0

] 

                                We get  x3 = 0 

                                 x2 = 0 

So that 𝑋2  = x1, x2, x3   = 1, 0, 0 is the suitable eigen vector and is normalized. 
Case 3  

          𝜆 = 2, the eigen value equation is   [
−1 0 0
0 −1 1
0 1 −1

]   [

𝑥1

 𝑥2  
𝑥3

] =  [
0
0
0

] 

                    We get                     -x1 = 0 

                                   -x2 +x3 = 0 

                                                         x2 - x3 = 0 

Solving these equations we get   x1 = 0;     x2 = x3        X3 = [

 𝑥1

 𝑥2

 𝑥3 
] =[

𝑥1

𝑥2

 𝑥3

] = [
0
𝑘
𝑘

] 

the normalized the eigen vector is  

                                                                        √02 + 𝑘2 + 𝑘2   = 1 

                                                                                            √2𝑘2 = 1 

                                                                                                    K = 
1

√2
 

the normalized eigen vector of  matrix 𝐴 for  𝜆 =  0    is {0,  
1

√2
,

1

√2
 } 
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3.7 Cayley – Hamilton Theorem: 

Every square matrix satisfies its own characteristics equation. For a square matrix A of 

order n, the characteristic polynomial is     

                      |𝐴 − 𝜆 𝐼|    =    𝑎0 + 𝑎1𝜆 + 𝑎2𝜆2+……………+ 𝑎𝑛𝜆𝑛 

Then the matrix equation    𝑎0𝐼 + 𝑎1𝑋 + 𝑎2𝑋2+……………+ 𝑎𝑛𝑋𝑛 = 0 is satisfied by X = A. 

Proof: 

The characteristic polynomial is       

                                   |𝐴 − 𝜆 𝐼|    =    𝑎0 + 𝑎1𝜆 + 𝑎2𝜆2+……………+ 𝑎𝑛𝜆𝑛 

The characteristic equation of A is  

                                    |𝐴 − 𝜆 𝐼|    =    𝑎0 + 𝑎1𝜆 + 𝑎2𝜆2+……………+ 𝑎𝑛𝜆𝑛 = 0 

Then the matrix equation   

                                               𝑎0𝐼 + 𝑎1𝑋 + 𝑎2𝑋2+……………+ 𝑎𝑛𝑋𝑛 = 0 

If the matrix equation is satisfied by A, then  

                                              𝑎0𝐼 + 𝑎1𝐴 + 𝑎2𝐴2+……………+ 𝑎𝑛𝐴𝑛 = 0 

            Since each element of the characteristic matrix (A−I )is an ordinary polynomial of 

degree n then the cofactor of every element of (A−I ) i an ordinary polynomial of degree(n-1). 

Therefore each element of B = adj (A−I ) is an ordinary polynomial of degree (n-1). 

     We can write  

                         B = adj (A−I ) =    𝐵0 + 𝐵1𝜆 + 𝐵2𝜆2+……………+ 𝐵𝑛−1𝜆𝑛−1   

      Where 𝐵0, 𝐵1 , 𝐵𝑛−1 are all square matrices of the same order n whose elements are 

polynomials in the elements of the square matrix A. We have, 

                      (A−I ) adj (A−I ) =  |𝐴 − 𝜆 𝐼|    I 

 (A−I ) 𝐵0 + 𝐵1𝜆 + 𝐵2𝜆2+……………+ 𝐵𝑛−1𝜆𝑛−1  = =    𝑎0 + 𝑎1𝜆 + 𝑎2𝜆2+………+ 𝑎𝑛𝜆𝑛) 𝐼 

Comparing the coefficient of like powers of  on both sides we get, 

A𝐵0 =  𝑎0 𝐼 

A𝐵1 − 𝐵0  =  𝑎1 𝐼 
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A𝐵2 − 𝐵1  =  𝑎2 𝐼 

. 

. 

. 

A𝐵𝑛−1 − 𝐵𝑛−2  =  𝑎𝑛−1 𝐼 

-𝐵𝑛−1 =  𝑎𝑛 𝐼 

Now pre multiplying these equations by I , A, A2, …….. An and then adding we get 

                          𝑎0𝐼 + 𝑎1𝐴 + 𝑎2𝐴2+……………+ 𝑎𝑛𝐴𝑛 = 0   

Example: 

            Find the characteristic equation of the matrix A = [
2 −1 1

−1 2 −1
1 −1 2

]    and verify that it is 

satisfied by A. Hence find the inverse of A. 

Solution : 

                                          |𝐴 − 𝜆 𝐼|    = |
2 − λ −1 1

−1 2 − λ −1
1 −1 2 − λ

|  = 0 

                                                          -𝜆3 + 6𝜆2 − 9𝜆 + 4 = 0 

𝜆3 − 6𝜆2 + 9𝜆 − 4 = 0 

This is the required characteristic equation of A. If the characteristic equation is satisfied by 

A , we must have  𝐴3  - 6𝐴2 +9A – 4I = 0 

𝐴2= [
2 −1 1

−1 2 −1
1 −1 2

]    [
2 −1 1

−1 2 −1
1 −1 2

]    =  [
6 −5 5

−5 6 −5
5 −5 6

] 

𝐴3  =  𝐴2.A  



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

65                                                  Mathematical Physics 
 

                        = [
6 −5 5

−5 6 −5
5 −5 6

] [
2 −1 1

−1 2 −1
1 −1 2

]      

 =  [
22 −21 21

−21 22 −21
21 −21 22

] 

So that the equation 𝐴3  - 6𝐴2 +9A – 4I = 0 become 

        = [
22 −21 21

−21 22 −21
21 −21 22

]     - 6 [
6 −5 5

−5 6 −5
5 −5 6

] + 9 [
2 −1 1

−1 2 −1
1 −1 2

]   - 4 [
1 0 0
0 1 0
0 0 1

]     

                     =  [
0 0 0
0 0 0
0 0 0

] 

This verifies the Cayley – Hamilton theorem. 

To find 𝐴−1,       𝐴3  - 6𝐴2 +9A – 4I = 0 

4I =  𝐴3  - 6𝐴2 +9A 

4I = A(𝐴2  - 6𝐴1 +9) 

 
𝐼

𝐴
 = 

1

4
 (𝐴2  - 6𝐴1 +9) 

𝐴−1,     =   
1

4
 (𝐴2  - 6𝐴1 +9I) 

=  
1

4
 [

6 −5 5
−5 6 −5
5 −5 6

]  −  
6

4
 [

2 −1 1
−1 2 −1
1 −1 2

]   +   
9

4
   [

1 0 0
0 1 0
0 0 1

]   

=   [

3/4 1/4 −1/4
1/4 3/4 1/4

−1/4 1/4 3/4
] 
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3.8  Diagonalization: 

To reduce a given square matrix 𝐴 to diagonal form, evaluate the characteristic roots ( or 

eigen values) λ1, , λ2, …… λn from the characteristic equation of the matrix A. Then the required 

diagonal matrix D of A can be obtained as the following method. 

 

D  =  [

λ1 0 . 0
0 λ2 . 0
. . . 0
0 0 0 λn

] 

 

 

Example: 

  Diagonalize the matrix    [

4

3

√2

3

√2

3

5

3

] 

Solution: 

    Let A = [

4

3

√2

3

√2

3

5

3

] and the characteristic equation is | A - 𝜆 𝐼 | =  | 

4

3
−  𝜆 

√2

3

√2

3

5

3
−  𝜆 

 | 

                                                         ( 
4

3
−  𝜆 )( 

5

3
−  𝜆) - 

√2

3
.

√2

3
 = 0 

𝜆2 – 3 𝜆 + 2 = 0 

(𝜆 − 1) (𝜆 − 2) = 0 

Therefore, 𝜆 = 1 and 𝜆  = 2 

Then the required diagonal matrix is D  =  [
1 0
0 2

] 

 

 

 



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

67                                                  Mathematical Physics 
 

Example: 

                       Diagonalize the  matrix   [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] 

Solution: 

      Let A = [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
]  

And characteristic equation |A - 𝜆  I| = [
cos 𝜃 −   𝜆 − sin 𝜃 0

sin 𝜃 cos 𝜃 −   𝜆 0
0 0 1 −   𝜆

] = 0 

                   (cos 𝜃 −   𝜆)(( cos 𝜃 −   𝜆)( 1 −   𝜆) - 0) + sin 𝜃 (sin 𝜃 (1 −   𝜆) - 0) = 0 

                                                 ( 1 −   𝜆) ((cos 𝜃 −   𝜆)2  + 𝑠ⅈ𝑛2 𝜃) = 0 

                                                       ( 1 −   𝜆)( 𝜆 2 + 2 𝜆 cos 𝜃 + 1) = 0 

The roots are         𝝀 = 1             and          𝝀 =  
𝟐 𝐜𝐨𝐬 𝜽 ±√(𝟒 𝐜𝐨𝐬𝟐 𝜽−𝟒)

𝟐
 

I.e.,                             𝜆 = 1    and    𝜆 = cos𝜃 ± sin𝜃;  

         𝜆 = 1    and       𝜆 = 𝑒±𝑖𝜃     

           Then the eigen values  𝜆1 = 1,         𝜆2 = 𝑒𝑖𝜃 ,        𝜆3  = 𝑒−𝑖𝜃  

The diagonal matrix is          [
1 0 0
0 𝑒𝑖𝜃 0
0 0 𝑒−𝑖𝜃

] 
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UNIT IV:   FOURIER TRANSFORMS & LAPLACE TRANSFORMS 

Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta 

function -Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. 

Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - 

Wave equation: Vibration of an infinite string and of a semi - infinite string. Laplace transform 

and its inverse - Transforms of derivatives and integrals – Differentiation and integration of 

transforms - Dirac delta functions -Application - Laplace equation: Potential problem in a semi - 

infinite strip 

 

4.1 Introduction: 

       Integral transforms are used in the solution of partial differential   equations.  The choice of 

a particular transform to be used for the solution of a differential equations depends upon the 

nature of the boundary conditions of the equation and the facility with which  the transform F(s) 

can be converted to give f(x). 

4.2 Fourier transform and its inverse: 

  Fourier Complex transform with the kernel k (s, k) = e-isk 

                             F[ 𝑓(𝑥) ] = F(s) = 
1

√2𝛱
 ∫ 𝑓(𝑥)𝑒𝑖𝑠𝑘 𝑑𝑥

∞

−∞
  

                                               𝑓(𝑥) =  
1

√2𝛱
 ∫ 𝑓(𝑥)𝑒−𝑖𝑠𝑘 𝑑𝑥

∞

−∞
   (Inversion formula) 

4.3 Fourier Intergral theorem: 

It states that f (x) = 
1

𝜋
 ∫ 𝑑𝑡

∞

0
∫ 𝑓 (𝑡) cos𝑢(𝑡 − 𝑥) 𝑑 𝑢

∞

−∞
 

Proof. 

            We know that Fourier series of a function f (x) in (– c, c) is given 

                                 f (x) = 
𝑎0

2
 + ∑ 𝑎𝑛 𝑐𝑜𝑠

𝑛𝜋𝑥

𝑐𝑛=1
 +  ∑ 𝑏𝑛 𝑐𝑜𝑠

𝑛𝜋𝑥

𝑐𝑛=1
  ……………(1) 

where a0, an and bn are given by 

                                               𝑎0 =  
1

𝑐
 ∫  𝑓(𝑡)𝑑𝑡

𝑐 

−𝑐
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                                           𝑎𝑛 =  
1

𝑐
 ∫  𝑓(𝑡) 𝑐𝑜𝑠

𝑛𝜋𝑡

𝑐
 𝑑𝑡

𝑐 

−𝑐

 

                                           𝑏𝑛 =  
1

𝑐
 ∫  𝑓(𝑡) 𝑠ⅈ𝑛

𝑛𝜋𝑡

𝑐
 𝑑𝑡

𝑐 

−𝑐

 

Substituting the values of a0 , an and bn in (1) we get 

f(x)=
1

2𝑐
∫  𝑓(𝑡)𝑑𝑡

𝑐 

−𝑐
+ ∑

1

𝑐
 1

∞

𝑛=1
∫  𝑓(𝑡) 𝑐𝑜𝑠

𝑛𝜋𝑡

𝑐
 𝑐𝑜𝑠

𝑛𝜋𝑥

𝑐
𝑑𝑡

𝑐 

−𝑐

+∑
1

𝑐
 1

∞

𝑛=1
             

∫  𝑓(𝑡) 𝑠ⅈ𝑛
𝑛𝜋𝑡

𝑐
 𝑠ⅈ𝑛

𝑛𝜋𝑥

𝑐
  𝑑𝑡

𝑐 

−𝑐

 

= 
1

2𝑐
∫  𝑓(𝑡)𝑑𝑡

𝑐 

−𝑐
 + ∑

1

𝑐
 1

∞

𝑛=1
∫  𝑓(𝑡) [𝑐𝑜𝑠

𝑛𝜋𝑡

𝑐
 𝑐𝑜𝑠

𝑛𝜋𝑥

𝑐
+ 𝑠ⅈ𝑛

𝑛𝜋𝑡

𝑐
 𝑠ⅈ𝑛

𝑛𝜋𝑥

𝑐
] 𝑑𝑡

𝑐 

−𝑐

 

= 
1

2𝑐
∫  𝑓(𝑡)𝑑𝑡

𝑐 

−𝑐
 +  ∑

1

𝑐
 1

∞

𝑛=1
 𝑓(𝑡) 𝑐𝑜𝑠

𝑛𝜋

𝑐
 (t-x) dt                          -----------(2) 

Since cosine functions are even functions i.e., cos(-theta) = cos theta the expression 

                             1+ 2 ∑ 𝑐𝑜𝑠
𝑛𝜋

𝑐
(𝑡 − 𝑥)

∞

𝑛=1
   =    ∑ 𝑐𝑜𝑠

𝑛𝜋

𝑐
(𝑡 − 𝑥)

∞

𝑛=−∞
   

Therefore, (2) becomes 

                            f(x) = 
1

2𝑐
∫  𝑓(𝑡)

𝑐 

−𝑐
  { ∑ 𝑐𝑜𝑠

𝑛𝜋

𝑐
(𝑡 − 𝑥)

∞

𝑛=−∞
 } 𝑑𝑡 

                                    = 
1

2𝜋
  ∫  𝑓(𝑡)

𝑐 

−𝑐
   {   

𝛱

𝑐
∑ 𝑐𝑜𝑠

𝑛𝜋

𝑐
(𝑡 − 𝑥)

∞

𝑛=−∞
 } dt 

 

                 Let us now assume that c increases indefinitely, so that we may write 
𝑛𝜋

𝑐
= 𝑢 , 

  
𝜋

𝑐
= 𝑢 .  This assumption gives, 

                          

                   𝑙ⅈ𝑚
𝐶→∞

  {   
𝛱

𝑐
∑ 𝑐𝑜𝑠

𝑛𝜋

𝑐
(𝑡 − 𝑥)

∞

𝑛=−∞
 }  =  ∫ cos 𝑢 (𝑡 − 𝑥)  𝑑𝑢 

∞

−∞
                …………..(4) 
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                                                                             = ∫ cos 𝑢 (𝑡 − 𝑥)  𝑑𝑢 
∞

0
 

Substituting in (3) from (4) we obtain 

                      f(x) = 
1

2𝑐
 ∫ 𝑓(𝑡)

∞

−∞
 { 2 ∫ cos 𝑢 (𝑡 − 𝑥)𝑑𝑢}

∞

0
 dt                               --------------(5) 

Thus              f (x) = 
1

𝜋
 ∫ 𝑑𝑡

∞

0
∫ 𝑓 (𝑡) cos𝑢(𝑡 − 𝑥) 𝑑 𝑢

∞

−∞
                        Proved. 

             Note: we have assumed the following conditions on f(x) 

(i) f(x) is defined as single valued except at finite points in (-c,c) 

(ii) f(x) is periodic outside (-c,c) with period 2c. 

(iii) f(x) and f’(x) are sectionally continuous in (-c,c) 

4.4 Fourier sine and cosine integrals:    

                                  f (x) = 
2

𝜋
 ∫ sin 𝑢𝑥 𝑑𝑢

∞

0
∫ 𝑓(𝑡) sin 𝑢𝑡 𝑑𝑡

∞

−∞
           (Fourier sine Integral) 

                                   f (x) = 
2

𝜋
 ∫ cos 𝑢𝑥 𝑑𝑢

∞

0
∫ 𝑓(𝑡) cos 𝑢𝑡 𝑑𝑡

∞

−∞
           (Fourier cosine Integral) 

  Proof:       

    We know that, cos u (t - x) = cos ( ut - ux) 

                             Cos u (t - x) = cos ut cos ux + sin ut sin ux 

Then equation (5) 

          f (x) = 
2

𝜋
 ∫ ∫ 𝑓(𝑡)(cos 𝑢𝑡 cos 𝑢𝑥)

∞

−∞

∞

0
 du dt +   

1

𝜋
 ∫ ∫ 𝑓(𝑡)(sin 𝑢𝑡 sin 𝑢𝑥)

∞

−∞

∞

0
 du dt ……..(6) 

Case 1                

  When f(t) is off. 

f(t) cos ut is odd hence  ∫ ∫ 𝑓(𝑡)(cos 𝑢𝑡 cos 𝑢𝑥)
∞

−∞

∞

0
 du dt = 0 

                                 for odd function    ∫ 𝑓(𝑥)𝑑𝑥 = 0
𝑎

−𝑎
 

                                 for even function ∫ 𝑓(𝑥)𝑑𝑥 =  2 ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

𝑎

−𝑎
 

From (6) we have 

                           f(x) = 
2

𝜋
 ∫ sin 𝑢𝑥 𝑑𝑢

∞

0
 ∫ 𝑓(𝑡) sin 𝑢𝑡 𝑑𝑡

∞

0
        ……………..(7) 
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           The relation (7)  is called Fourier sine integral. 

Case 2: 

        When f(t) is even. 

                           ∫ ∫ 𝑓(𝑡)(sin 𝑢𝑡 sin 𝑢𝑥)
∞

−∞

∞

0
 du dt = 0 

                          f(t) cos ut is even. 

From (6) we have 

                            f(x) = 
2

𝜋
 ∫ cos 𝑢𝑥 𝑑𝑢

∞

0
 ∫ 𝑓(𝑡) cos 𝑢𝑡 𝑑𝑡

∞

0
        ……………..(8) 

This relation is known as Fourier cosine integral. 

 

 

4.5 Fourier sine and cosine Transforms: 

                                           

f(x) = 
2

𝜋
 ∫ sin 𝑠𝑥 𝑑𝑠

∞

0
 ∫ 𝑓(𝑡) sin 𝑠𝑡 𝑑𝑡

∞

0
 

                                      f(x) =  √
2

𝜋
∫ sin 𝑠𝑥 𝑑𝑠 𝐹(𝑠)

∞

0
             -----------------(1) 

                                      F(s) =  √
2

𝜋
∫ sin 𝑠𝑥 𝑓(𝑡)

∞

0
                  ------------------(2) 

In eqn (2) F(s) is called Fourier sine transform of f (x).  

In equation (1),  f (x) is called the Inverse Fourier sine transform of F (s) 

From equation (8)  we have 

                                     f(x) =  √
2

𝜋
∫ cos 𝑠𝑥 𝑑𝑠 𝐹(𝑠)

∞

0
                -----------(3) 

                                      F(s) =  √
2

𝜋
∫ cos 𝑠𝑥 𝑓(𝑡)

∞

0
                   -------------(4) 

In equation (4), F (s) is called Fourier cosine transform of F (x). 

In equation (3), f (x) is called the inverse Fourier cosine transform of F (s). 

Example  

    Find the Fourier transform of {
1       for |x| < 𝑎
0      for   |x| > 𝑎
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Solution: 

The Fourier transform of a function f (x) is given by 

                                         F(s) = 
1

√2𝛱
 ∫ 𝑓(𝑥)𝑒𝑖𝑠𝑘 𝑑𝑥

∞

−∞
  

Substituting the value of f (x), we get 

                                         F(s) = 
1

√2𝛱
 ∫ 1. 𝑒𝑖𝑠𝑘 𝑑𝑥

𝑎

−𝑎
 = [

𝑒𝑖𝑠𝑘

𝑖𝑠
]

−𝑎

𝑎

 

                                               =   
1

√2𝛱
. 

2

𝑠
 . 

𝑒𝑖𝑎𝑠−𝑒−𝑖𝑎𝑠

2𝑖
 

                                               =   
1

√2𝛱
 
2 sin 𝑠𝑎

𝑠
 

                                                = √
2

𝜋
 
sin 𝑠𝑎

𝑠
 

Example: 

Find the Fourier sine and cosine transforms of f (x) = e−x . 

Solution.  

          The Fourier sine transform of f (x) is given by 

                                                 F(s) =  √
2

𝜋
∫ sin 𝑠𝑥 𝑓(𝑥)

∞

0
 dx 

Putting the value of f (x) we get 

                                               F(s) =  √
2

𝜋
∫   𝑒−𝑎𝑥 sin 𝑠𝑥 

∞

0
 dx 

                                                       = √
2

𝜋
 
𝑒2 −𝑎𝑥

a2+ 𝑠2
   [ -a sin sx -s cos sx ]0

∞ 

                                                   =  √
2

𝜋
 [ -0 +   

1

𝑎2+ 𝑠2
 x s] 

       The Fourier cosine transform is 

                                                 F(s) =  √
2

𝜋
∫  𝑒−𝑎𝑥  cos 𝑠𝑥 

∞

0
𝑑𝑥    
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                                                        = √
2

𝜋
 

𝑒−𝑎𝑥

a2+ 𝑠2
   [ -a cos sx + s sin sx J0

∞ 

                                                         = √
2

𝜋
 

𝑎

𝑎2+𝑠2
 

4.6 Dirac delta function: 

Example: 

Find the complex Fourier transform of dirac delta function (t − a). 

Solution: 

                        F{(t − a)} =  
1

√2𝛱
 ∫ 𝑒𝑖𝑠𝑡 𝑑(𝑡 −  𝑎)  𝑑𝑥

∞

−∞
 

                                        = 
1

√2𝛱
  lim

ℎ→0
∫

1

ℎ
 𝑒𝑖𝑠𝑡𝑎+ℎ    

𝑎
 dt 

                                         = 
1

√2𝛱
  lim

ℎ→0

1

ℎ
 (

𝑒ⅈ𝑠𝑡

ⅈ𝑠
)

𝑎+ℎ

 dt 

                                         = 
1

√2𝛱
  lim

ℎ→0
 (

𝑒ⅈ𝑠𝑡−1

ⅈ𝑠ℎ
)

1

  

                                         = 𝑒𝑖𝑠𝑡. 
1

√2𝛱
                

  Note. Dirac delta function (t − a) is defined as 

                                (t -  a)  =  lim
ℎ→0

 I (ht - a)  where 

              I (ht - a)  = 
1

ℎ
             for  a < t < a+h 

               I (ht - a)  = 0  for t < a and t > a + h 

4.7 CONVOLUTION 

The Convolution of two functions f (x) and g (x) is defined as 

                 f (x)*g(x) = ∫ 𝑓(𝑥)𝑔(𝑥 − 𝑢)𝑑𝑢
∞

−∞
 

Convolution Theorem on Fourier Transform 

The Fourier transform of the convolution of f (x) and g (x) is the product of their Fourier 

transforms, i.e., 
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                                   F [ f (x)*g(x)] = F [ f (x)] F [g(x)] 

 Proof. 

                        We know that 

                                               [ f (x)*g(x)] = 
1

√2𝛱
 ∫ 𝑓(𝑢) . 𝑔(𝑥 − 𝑢) 𝑑𝑢

∞

−∞
 ------------------(1) 

Taking Fourier transform of both sides of (1), we have 

                                F [ f (x)*g(x)] = F [∫ 𝑓(𝑢) . 𝑔(𝑥 − 𝑢) 𝑑𝑢
∞

−∞
] 

                                                 =   
1

√2𝛱
 ∫    [

1

√2𝛱
 ∫ 𝑓(𝑢) . 𝑔(𝑥 − 𝑢) 𝑑𝑢

∞

−∞

∞

−∞

] 𝑒𝑖𝑠𝑘 dx 

                                          =  
1

√2𝛱
 ∫ { 𝑓(𝑢) 𝑑𝑢. 𝐹𝑔 (𝑥 − 𝑢)}

∞

−∞
 

                                                             =  
1

√2𝛱
 ∫ 𝑓(𝑢) 𝑑𝑢 𝑒ⅈ𝑠𝑢  𝐺(𝑠)

∞

−∞
 

                                                               = G(s) .  
1

√2𝛱
 ∫ 𝑓(𝑢)  𝑒ⅈ𝑠𝑢  𝑑𝑢

∞

−∞
 

                                                               = G(s)  F(s) 

                                                       = F(s) G(s)                                                   Proved. 

By inversion 

                              F−{F(s)G(s)} = f *g = F−{F(s)}*F−{G(s)} 

4.8 Fourier transform of derivatives:  

We have already seen that, 

                                       F{f n (x)} = (−is)n F(s) 

(i)    F 
𝜕2𝑢

𝜕𝑥2 = ( -is )2  F {u  ( x  )} = -s2  𝑢̅   where 𝑢̅    is Fourier transform of u w.r.t. x. 

(ii)   Fc  {f ‘ (x)} = - √
2

𝜋
 f( 0 ) + s Fs (s) 

        L.H.S =  √
2

𝜋
 ∫ 𝑓′(𝑠). cos 𝑠𝑥 𝑑𝑥

∞

0
 

                   =  √
2

𝜋
 ∫ cos 𝑠𝑥 𝑑{𝑓(𝑥)}

∞

0
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                    =  √
2

𝜋
 f(x) cos sx + √

2

𝜋
 𝑠 ∫ sin sx {𝑓(𝑥)}𝑑𝑥

∞

0
 

                    = s Fs (s) - √
2

𝜋
 f(0) 

(iii) Fs{f (x)} =  √
2

𝜋
 𝑠 ∫ sin sx d {𝑓(𝑥)}

∞

0
 

                      = √
2

𝜋
 f(x) sin sx - √

2

𝜋
 𝑠 ∫ cos sx {𝑓(𝑥)}𝑑𝑥

∞

0
 

                        =  - s Fs (s) 

(iv) Fc{f (x)} = √
2

𝜋
  ∫ cos sx d {𝑓′(𝑥)}

∞

0
 

                        =  √
2

𝜋
 f’(x) cos sx + √

2

𝜋
 𝑠 ∫ sin sx {𝑓′(𝑥)}𝑑𝑥

∞

0
 

 = √
2

𝜋
 f (0) + s Fs f (x) 

                        =  - s2  Fc (s) - √
2

𝜋
 f  (0) 

(v) Fs{f }(x) =  √
2

𝜋
 ∫ sin sx d{f′(x)}

∞

0
 

                       =  √
2

𝜋
 f’(x) sin sx - √

2

𝜋
 𝑠 ∫ cos  sx {𝑓′(𝑥)}𝑑𝑥

∞

0
 

                       =   - s Fc  f (x) 

                        =  - s2  Fs (s) + √
2

𝜋
 f (0) 

4.8 Application of Fourier Transform: (flow of heat) 

                  Let heat flow along a bar of uniform cross-section, in the direction perpendicular to 

the cross-section. Take one end of the bar as origin and the direction of heat flow is along x-axis. 

                  Let the temperature of the bar at any time t at a point x distance from the origin be 

u (x, t). Then the equation of one dimensional heat flow is  



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

76                                                  Mathematical Physics 
 

𝜕𝑢

𝜕𝑡
 = 𝑐2 𝜕2𝑢

𝜕𝑥2
 

Example: 

A rod of length l with insulated sides is initially at a uniform temperature u. Its ends are suddenly 

cooled to 0°C and are kept at that temperature. Prove that the temperature 

function u (x, t) is given by  

u (x, t) = ∑ 𝑏𝑛 sin (
𝑛𝜋𝑥

𝑙
)∞

𝑛=1  𝑒
−𝑐2𝜋2𝑛2𝑡

𝑡2  

where bn is determined from the equation 

U0 =  ∑ 𝑏𝑛 sin (
𝑛𝜋𝑥

𝑙
)∞

𝑛=1  

Solution: 

Let the equation for the conduction of heat be 

𝜕𝑢

𝜕𝑡
 = 𝑐2 𝜕2𝑢

𝜕𝑥2                   -------------(1) 

Let us assume that u = XT, where X is a function of x alone and T that of t alone 

𝜕𝑢

𝜕𝑡
 = X 

𝜕𝑇

𝜕𝑡
 

                                                             And   
𝜕2𝑢

𝜕𝑥2  = T 
𝜕2𝑋

𝜕𝑥2                    

Substituting these values in (1), we get     X 
𝜕𝑇

𝜕𝑡
 =  𝑐2 𝑇 

𝜕2𝑋

𝜕𝑥2 

1

𝑐2 𝑇
 
𝜕𝑇

𝜕𝑡
 = 

1

𝑋
 
𝜕2𝑋

𝜕𝑥2    -------------(2) 

Let each side be equal to a constant ( – p2). 

         
1

𝑐2 𝑇
 
𝜕𝑇

𝜕𝑡
 = – p2  

 𝜕𝑇

𝜕𝑡
=    𝑝2𝑐2 𝑇 -------------------(3) 

and         
1

𝑋
 
𝜕2𝑋

𝜕𝑥2
 = – p2         

          

             
𝜕2𝑋

𝜕𝑥2 + p2 X = 0                  ------------------(4) 

Solving (3) and (4) we have 
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T = c1 𝑒−𝑃2𝑐2𝑡
   and  X =  c2  cos px +  c3 sin px      

U =  c1 𝑒−𝑃2𝑐2𝑡
(c2  cos px +  c3 sin px)            --------------(5) 

Putting x = 0, u = 0 in (5), we get 

0 = c1 𝑒−𝑃2𝑐2𝑡
 (c2)  

c2 = 0 since c1 ≠ 0   

(5) becomes                           u = c1 𝑒−𝑃2𝑐2𝑡
 c3 sin px                      ---------------(6) 

Again putting  x = l, u = 0 in (6), we get 

0 = c1 𝑒−𝑃2𝑐2𝑡
 (c2)  sin pl 

sin pl =  0 = sin n𝜋 

      pl = n𝜋 

        p = 
n𝜋

𝑙
 

Hence (6) becomes u = c1 c3 𝑒−𝑃2𝑐2𝑡
  sin (

𝑛𝜋𝑥

𝑙
) 

                             = bn  𝑒
−𝑐2𝜋2𝑛2

𝑙2   sin (
𝑛𝜋𝑥

𝑙
),          bn  = c1 c3 

This equation satisfies the given conditions for all integral values of n. Hence taking 

n = 1, 2, 3, ......, the most general solution is 

u (x, t) = ∑ 𝑏𝑛 sin (
𝑛𝜋𝑥

𝑙
)∞

𝑛=1  𝑒
−𝑐2𝜋2𝑛2𝑡

𝑡2  

By initial conditions u = U0 when t = 0 

U0 =  ∑ 𝑏𝑛 sin (
𝑛𝜋𝑥

𝑙
)∞

𝑛=1                     Proved. 

Example: 

             Find the solution of  ℎ2 𝜕𝑢

𝜕𝑡
 = 

𝜕2𝑢

𝜕𝑥2
     

for which u (0, t) = u (l, t) = 0, u (x, 0) =    sin (
πx

l
)  by method of variables separable. 

Solution: 
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                                            ℎ2 𝜕𝑢

𝜕𝑡
 = 

𝜕2𝑢

𝜕𝑥2
      ---------(1) 

we know that,                    
𝜕2𝑢

𝜕𝑥2
   =  

1

𝑐2
  

𝜕𝑢

𝜕𝑡
              ------------(2) 

On comparing (1) and (2) we get  

                                                      ℎ2 =  
1

𝑐2
 

Thus solution of (1) is 

                                  u = c1 𝑒
−

𝑝2𝑡

ℎ2
(c2  cos px +  c3 sin px)                       -------------(3) 

On putting x = 0, u = 0 in (3) we get   0 = c1 𝑒
−

𝑝2𝑡

ℎ2
 (c2)                           c1 ≠ 0 ,  c2 = 0 

(3) is reduced to  

                                             u = c3𝑒
−

𝑝2𝑡

ℎ2
 c1 sin px               -------------------(4) 

On putting x = l and u = 0 in (4), we get   

                                            0 = c3 𝑒
−

𝑝2𝑡

ℎ2
  c1  sin pl 

Now (4) is reduced to 

                                    u = c1 c3 𝑒
−

𝑛2𝜋2𝑡

ℎ2𝑙2
  sin (

𝑛𝜋𝑥

𝑙
)                ------------------(5) 

On putting t = 0, u = sin 
𝜋𝑥

𝑙
 in (5) we get 

                                            sin 
𝜋𝑥

𝑙
 = c4 sin 

𝑛𝜋𝑥

𝑙
 

This equation will be satisfied if 

                                                n = 1 and c4 = 1 

On putting the values of c4 and n in (5), we have 

                                                u = sin 
𝜋𝑥

𝑙
 𝑒

−
𝜋2𝑡

ℎ2𝑙2 
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4.9 Application of Fourier Transform: (Vibration in a  infinite string) 

       Consider an infinitely long freely vibrating string, let y be the displacement of vibration 

from its mean position and satisfies the wave equation 

                              
ⅆ2𝑦

ⅆ𝜘2
=

1

𝑣2
 
ⅆ2𝑦

ⅆ𝑡2
   ---------------(1) 

Where 𝑥 is the distance measured along the String; 

𝑣 is the velocity of wave moving along the string: and 𝑦 is a function 𝑥 and 𝑡 

The initial condition of the string is 𝑦 (𝑥, 0 ) = 𝑥 

Multiplying on both sides of equation (1) by 
𝑒𝑖𝑠𝑥

√2𝛱
  and integrating over the limit (-∞, ∞) we get  

                       
1

√2𝛱
  ∫

𝑑
2

𝑦

𝑑𝜘2

∞

−∞

 eisk dx = 
1

𝑣2
 

1

√2𝛱
  ∫

𝑑
2

𝑦

𝑑𝑡2

∞

−∞

 eisk dx   -------------(2) 

It is the Fourier Transform of second derivative 

Let 

                                 𝑌 (𝑠, ) =  
1

√2𝛱
 ∫

𝑦

1

∞

−∞

 eisk dx ----------------------(3) 

                               
1

√2𝛱
  ∫

ⅆ2𝑦

ⅆ𝑡2

∞

−∞

 eisk dx   = (-is)2 𝑌 (𝑠, 𝑡 ) ------------(4) 

Equation (2) becomes (−ⅈ𝑠)2  𝑌 (𝑠, 𝑡 ) =  
1

𝑣2
 
ⅆ2𝑌(𝑠 ,𝑡)

ⅆ𝑡2
    ----------(5) 

                             
ⅆ2𝑦

ⅆ𝑡2
 = - 𝑣2s2 Y     -------------(6) 

at t = 0, equation (3) becomes 𝑌 (𝑠, 0) =  
1

√2𝛱
 ∫

𝑦

1

∞

−∞

(𝑥, 0) e isk dx 

                                                                 = 
1

√2𝛱
 ∫ 𝐹 (𝑥)

∞

−∞
 e isk dx = f(s) --------(6) 

A general solution of equation (6) is (s ,𝑡 )= 𝑓( 𝑠 )𝑒 ivst ------------------------( 8) 

The inverse Fourier Transform of (3) is  

                                  𝑦 (𝑥, 𝑡) = 
1

√2𝛱
 ∫ 𝑌(𝑠, 𝑡)

∞

−∞
 e -isk ds ------------(9) 

𝑈𝑠ⅈ𝑛𝑔 (8) ⅈ𝑛 (9), 𝑊𝑒 𝑔𝑒𝑡 𝑦 (𝑥, 𝑡) 
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                                                 =  
1

√2𝛱
 ∫ 𝑓(𝑠)

∞

−∞
 e -isk ds 

                                            = 
1

√2𝛱
 ∫ 𝑓(𝑠)

∞

−∞
 e -is(x+vt) ds 

𝐴𝑡 𝑡 = 0, 𝑤𝑒 h𝑎𝑣𝑒 (𝑥, 0 ) = 
1

√2𝛱
 ∫ 𝑓(𝑠)

∞

−∞
   e -isx ds  =  F(x) 

(𝑥)is the inverse Fourier transform of 𝑓(𝑠), therefore 𝑦 𝑥, 𝑡 = 𝐹(𝑥 ± 𝑣𝑡). This 

corresponds to the waves moving in + 𝑥 and – 𝑥 directions respectively. 

 

4.10 Laplace Transform: 

If 𝐹 ( 𝑡 ) be a function of 𝑡 defined for all values, then Laplace transform of 𝐹 (𝑡) is 

denoted by ℒ( 𝐹( 𝑡)) or 𝐹( 𝑠 ) or 𝑓( 𝑠 ) is defined as 

                               ℒ (F(t )) = F( s )= 𝑓 (𝑠) =  ∫ 𝐹(𝑡)
∞

−∞
 e -st dt 

The parameter 𝑠 is real positive number and the integral exists. 

If the integral converges for some value of (𝑠), then only the Laplace transformation of 𝐹( 𝑡) 

exists otherwise not. ℒ is Laplace transformation operator. The operation of multiplying 

𝐹 ( s ) by 𝑒 −𝑠𝑡 and then integrating between the limits 0 to ∞ is known as Laplace 

transformation. 

First Shifting Theorem: 

                               𝐼𝑓 ℒ(𝐹(𝑡)) = 𝑓 (𝑠 ), 𝑡h𝑒𝑛 ℒ 𝑒 at𝐹 (𝑡) = 𝑓( 𝑠 – 𝑎) 

ie., if𝑓 𝑠 is the Laplace transformation of the function 𝐹 𝑡 and 𝑎 is any real or complex 

number then 𝑓 (𝑠 – 𝑎) is Laplace transformation of 𝑒 at 𝐹( 𝑡) . 

                                             F( 𝑠) = ℒ( 𝐹( 𝑡)) ⟹ 𝑓 (𝑠− 𝑎) = ℒ 𝑒 at 𝐹( 𝑡) 

Proof: 

              ℒ (F(s - a ))  = ∫ F( t)
∞

0
 𝑒-st dt. ℒ (𝑒at (F( t ))) =  ∫ F( t)

∞

0
 𝑒at 𝑒-st  dt 

                                               =  ∫ F( t)
∞

0
 𝑒-(-s-a)t dt 

𝑃𝑢𝑡 (𝑠 – 𝑎) 𝑢 > 0,            =  ∫ F( t)
∞

0
 𝑒ut dt 
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                                              = f (u) 

𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑢 𝑏𝑦 𝑓 (𝑠 – 𝑎) , 𝑡h𝑒𝑛 𝐿 𝑒𝑎𝑡 𝐹 (𝑡) = 𝑓( 𝑠 – 𝑎) h𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑣𝑒d. 

 

Second Shifting Theorem: 

If ℒ (𝐹( 𝑡)) = 𝑓( 𝑠 )and 𝐺( 𝑡 ) =  {
F(t − a)      t > 0
0                   t < 𝑎

  then 𝐿 (𝐺( 𝑡 ))= 𝑒−𝑎𝑠 𝑓 (𝑠) 

Proof : 

𝐵𝑦 𝑑𝑒𝑓ⅈ𝑛ⅈ𝑡ⅈ𝑜𝑛, ℒ (F(t )) = ∫ G( t)
∞

0
 𝑒-st dt 

                                                = ∫ G( t)
𝑎

0
 𝑒-st dt + ∫ G( t)

∞

𝑎
 𝑒-st dt     0 < a < ∞ 

                                                 =  ∫ 0
𝑎

0
 𝑒-st dt + ∫ F( t − a)

∞

𝑎
 𝑒-st dt      

                                                 = ∫ F( t − a)
∞

𝑎
 𝑒-st dt      

𝑃𝑢𝑡                   𝑡 − 𝑎 = ; 𝑡 = 𝑢 + 𝑎; 𝑑𝑡 = 𝑑𝑢 

 Wh𝑒𝑛                𝑢 = 0 , 𝑡 = 𝑎 𝑎𝑛𝑑 𝑢 = ∞ , 𝑡 = ∞ 

                                     ∴ ℒ (F(t )) =   ∫ F( u)
∞

0
 𝑒-s(u+a) dt 

                                                           =   𝑒-sa ∫ F( u)
∞

0
 𝑒-su dt           

𝐵𝑦 𝑝𝑟𝑜𝑝𝑒𝑟𝑡ⅈ𝑒𝑠 𝑜𝑓 𝑑𝑒𝑓ⅈ𝑛ⅈ𝑡𝑒 ⅈ𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑠 𝑤𝑒 𝑐𝑎𝑛 𝑤𝑟ⅈ𝑡𝑒, ℒ( 𝐺( 𝑡 ))= 𝑒−𝑠𝑎  ∫ F( t)
∞

0
 𝑒-st dt 

                                                            = 𝑒−𝑠𝑎 𝐿 (F(t ))= 𝑒−𝑠𝑎 𝑓( 𝑠 ) 

hence proved                                                          
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4.11 Laplace Transform of derivatives: 

If ℒ (𝐹( 𝑡 ))= 𝑓( 𝑠 ) 𝑡h𝑒𝑛 ℒ( 𝐹′( 𝑡 ))= 𝑠𝑓( 𝑠 )− 𝐹(0); if 𝐹( 𝑡 )is continuous for 0 ≤ 𝑡 ≤ 𝑁 

and of exponential order for 𝑡 > 𝑁 while 𝐹′( 𝑡 )is sectionaly continuous for 0 ≤ 𝑡 ≤ 𝑁. 

Proof: 

Case1 

𝐼𝑓 𝐹′ (𝑡) ⅈ𝑠 𝑐𝑜𝑛𝑡ⅈ𝑛𝑢𝑜𝑢𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 𝑡h𝑒𝑛 =  ∫ F′( t)
∞

0
 𝑒-st dt 

= [𝐹(𝑡) e^ − st]0
∞ - ∫ F( t)(−s

∞

0
 𝑒-st )dt 

= lim
𝑡→∞

( 𝑒-st F( t)) -  F(0) + s ∫ F( t)(
∞

0
 𝑒-st )dt 

  =lim
𝑡→∞

( 𝑒-st F( t)) -  F(0) + s L(F(t)) 

                             lim
𝑡→∞

( 𝑒-st F( t)) = 0,    for s >a 

                        ℒ( 𝐹′( 𝑡 ))= 𝑠 𝐿( 𝐹( 𝑡 ))− 𝐹( 0 ) 

Case2 
                   (i) If 𝐹′( 𝑡 )is merely piecewise continuous, then the integral can be broken 

into sum of integrals in different ranges from 0 𝑡𝑜 ∞ such that in each of such parts 𝐹′ (𝑡) is 

continuous 

We have ℒ( 𝐹′( 𝑡 ))= 𝑠𝐿( 𝐹( 𝑡 ))− 𝐹( 0 )  and  ℒ( 𝐺′( 𝑡 ))= 𝑠ℒ( 𝐺( 𝑡)) – 𝐺( 0 ) 

Put            𝐺(𝑡) = 𝐹′(𝑡) , 𝐹′′ (𝑡) = 𝑠ℒ( 𝐹′( 𝑡 ))− 𝐹′( 0) 

= 𝑠( 𝑠( ℒ( 𝐹( 𝑡)) – 𝐹( 0)) - 𝐹′( 0) 

= 𝑠2ℒ (𝐹( 𝑡 ))− 𝑠𝐹( 0 )− 𝐹′(0) = ℒ( 𝐹′′( 𝑡)) 

                   (ii) ℒ (𝐻′′( 𝑡)) = 𝑠2ℒ( 𝐻( 𝑡)) – 𝑠𝐻( 0 )− 𝐻′(0) 

Put                                                            (𝑡) = 𝐹′(𝑡) ,  

                              ℒ (𝐹′′′( 𝑡 ))= 𝑠2ℒ (𝐹′( 𝑡)) − 𝑠𝐹′( 0 )− 𝐹′′(0) 

                                                     = 𝑠2 (𝑠 ( ℒ ( 𝐹( 𝑡)) – 𝐹( 0 ))− 𝑠𝐹′( 0 )− 𝐹′′(0) 

                               ℒ 𝐹′′′( 𝑡 )= 𝑠3ℒ (𝐹( 𝑡)) − 𝑠2𝐹( 0 )− 𝑠𝐹′ (0 )− 𝐹′′(0) 
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                    (iii)    If 𝐹′(𝑡) and its first (n-1) derivatives are continuous, then proceeding as above 

we have the general case, 

ℒ (𝐹𝑛 ( 𝑡)) = 𝑠𝑛 ℒ( 𝐹( 𝑡 ))– 𝑠𝑛−1𝐹( 0 )− 𝑠𝑛−2 𝐹′( 0 )− ⋯ ⋯ ⋯ ⋯ − 𝐹 𝑛−1(0) 

 

 

4.12 Laplace Transform of Integral: 

If ℒ (𝐹( 𝑡 ))= 𝑓( 𝑠 ) 𝑡h𝑒𝑛  
1

𝑠
 𝑓( 𝑠 )= ℒ ( ∫ 𝐹

𝑡

0
(𝑢) 𝑑𝑢 

Proof: 

 Let                       ( u )= ∫ 𝐹
𝑡

0
(𝑢) 𝑑𝑢 then  

                             ( 0 )= ∫ 𝐹
𝑡

0 
(𝑢) 𝑑𝑢 = 0 

                And      𝐺′( 𝑡 )= 
ⅆ

ⅆ𝑡
 (∫ 𝐹

𝑡

0 
(𝑢) 𝑑𝑢) = F(t) 

But we know that ℒ (𝐺′ (𝑡)) = 𝑠 ℒ( 𝐺( 𝑡 ))− 𝐺(0) 

                   ∴                  ℒ (𝑡) = 𝑠 ℒ( 𝐺( 𝑡 ))− (0) 

1

s
    ℒ 𝐹(𝑡) = ℒ( 𝐺( 𝑡 ) 

1

s
    ℒ 𝐹(𝑡) = ℒ ( ∫ 𝐹

𝑡

0 
(𝑢) 𝑑𝑢 ) 

𝑷𝒓𝒐𝒃𝒍𝒆𝒎: 

                     Find ℒ (( 1 )) if Laplace Transform of the function 𝐹(𝑡) = 1 

Solution: 

We have ℒ( 𝐹(𝑡)) =  ∫ F( t)
∞

0
 𝑒-st dt 

 ∴                                              ℒ( 𝐹 (1)) = ∫ 1
∞

0
 𝑒-st dt 

= [
𝑒−𝑠𝑡

−𝑠
]

0

∞
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= 
1

−𝑠
 (𝑒∞ −  𝑒0 )  

= 
1

−𝑠
 (0 - 1) 

=
1

−𝑠
 

 

 

Example: 

                  Find ℒ { 𝑒𝑎𝑡 } 

Solution: 

                             ℒ( 𝑒𝑎𝑡 )= ∫  𝑒𝑡  
∞

0
𝑒-st dt 

= ∫  
∞

0
 𝑒-(s - a)t dt 

= [
  𝑒−(𝑠−𝑎)𝑡  

−(𝑠−𝑎)
]

0

∞

 =   𝑒∞ - 
1

− (𝑠−𝑎)
   

= 0 +
1

(𝑠−𝑎)
  =  

1

(𝑠−𝑎)
 

Derivatives problems: 

Example: 

Evaluate          (i) ℒ (1 )= 
1

𝑠
 

                        (ii) ℒ (s) = 
1

𝑠2 

                         (iii) ℒ( 𝑒𝑎𝑡) =  
1

(𝑠−𝑎)
 

Solution: 

Using Laplace Transform of derivatives 

              (i) ℒ (𝐹′( 𝑡 ))= 𝑠ℒ (𝐹( 𝑡 ))− 𝐹( 0) 

Given that (s )= 1,        ∴ 𝐹′ (𝑡 )= 0, 𝑎𝑛𝑑 𝐹( 0 )= 1 

Substituting we get, ( 0 )= 𝑠𝐿( 1 )− 1 

                                      0 = 𝑠𝐿 (1 )− 1     
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                                       ∴L ( 1 )= 
1

𝑠
 

           (ii) Given that (s )= 𝑡,    ∴ 𝐹′ (𝑡 )= 1,     𝑎𝑛𝑑 𝐹( 0 )= 0 

                               ℒ (1 )= 𝑠ℒ( 𝑡 )− 0,  

                             but ℒ (1 )= 
1

𝑠
 

                               s( t )= 
1

𝑠
  and therefore   ℒ (𝑡 ) = 

1

𝑠2 

           (iii) 𝐺ⅈ𝑣𝑒𝑛 𝑡h𝑎𝑡 F(t )= 𝑒𝑎𝑡 , ∴ 𝐹′ (𝑡) = 𝑎𝑒𝑎𝑡 , 𝑎𝑛𝑑 𝐹(0) = 1 

𝑆𝑢𝑏𝑠𝑡ⅈ𝑡𝑢𝑡ⅈ𝑛𝑔 𝑤𝑒 𝑔𝑒𝑡, ℒ (a 𝑒𝑎𝑡 )= 𝑠ℒ( 𝑒𝑎𝑡 )− 1 

𝑎 ℒ(  𝑒𝑎𝑡 )= 𝑠ℒ( 𝑒𝑎𝑡 )− 1 

1 = 𝑠ℒ ( s) − 𝑎 ℒ (𝑒𝑎𝑡  ) 

                                ⅈ𝑒. ,    ℒ( 𝑒𝑎𝑡   )(𝑠 − 𝑎 )= 1 

                             ∴    ℒ( 𝑒𝑎𝑡) =  
1

(𝑠−𝑎)
 

Problem of Transform of integrals: 

Example: 

           Evaluate ℒ( ∫ sin 2𝑢 
∞

0
 du ) 

Solution: 

                 We have 

                                  ℒ (sin 2)  =  
2

(   𝑠2+4)
 = f(s) 

                                      ℒ (𝐹( 𝑢) 𝑑𝑢)  = 
𝑓(𝑠)

𝑠
 

                           ∴        ℒ( ∫ sin 2𝑢 
∞

0
 du ) =  

2

𝑠( 𝑠2+4)
 

4.13 Inverse Laplace Transform 

Partial fraction method: 

Any rational function 
𝑃(𝑠)

𝑄(𝑠)
  where (𝑠) and (𝑠) are polynomials with the degree of (𝑠)  less than 

that of 𝑄(𝑠) can be written as the sum of rational functions (called partial fraction) 

having the form 
𝐴

(𝑎𝑠+𝑏)^𝑟
 ,    

𝐴𝑠+𝐵

(𝑎𝑠2+𝑏𝑠+𝑐)𝑟   where r = 1,2,3,……… By finding the inverse Laplace 
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transform of each of the partial fractions we can find 𝐿−1 
𝑃(𝑠)

𝑄(𝑠)
 

Example: 

1.  
2𝑠−5

(3𝑠−4)(2𝑠+1)2
 

                              =  
𝐴

3𝑠−4
 + 

𝐵

(2𝑠+1)3 + 
𝐶

(2𝑠+1)2  + 
𝐷

2𝑠+1
 

2.  
3𝑠2−4𝑠+2

(𝑠2+2𝑠+4)2 (𝑠−5)
 

                                 =       
𝐴𝑠+ 𝐵

(𝑠2+ 2𝑠+4))2 
 + 

𝐶𝑠+𝐷

(𝑠2+2𝑠+4)1 
 + 

𝐸

𝑠−5
 

Inverse Laplace Transform definition: 

If the Laplace transform of a function F(t) is f (s)  

          ie if 𝐿( 𝐹(𝑡)) = 𝑓(𝑠), then 𝐹(𝑡) is called an inverse Laplace transform of 𝑓 (𝑠) . 

           ie, 𝐹( 𝑡 ) = 𝐿−1 (𝑓(𝑠)) 

Where 𝐿−1 is called the inverse Laplace transformation operator. 

Example: 

                 𝐹ⅈ𝑛𝑑 𝐿−1   
3𝑠+7

(𝑠2−2𝑠−4)1 
 

Solution: 

                              
3𝑠+7

(𝑠2−2𝑠−4)1 
 =  

3𝑠+7

(𝑠−3)(𝑠+1)
  =  

𝐴

𝑠−3
 + 

𝐵

𝑠+1
 

                                          3𝑠 + 7 = ( + 1) + 𝐵 (𝑠 − 3) 

                                                        = 𝐴 + 𝐵 𝑠 + 𝐴 − 3𝐵 

Equating the coefficient of 𝑠 and constant terms we get 

                                           𝐴 + 𝐵 = 3; 𝑎𝑛𝑑 𝐴 − 3𝐵 = 7 

Solving these equations we get, 𝐴 = 4 𝑎𝑛𝑑 𝐵 = −1 

3𝑠+7

(𝑠−3)(𝑠+1)
 = 

4

𝑠−3
 -  

1

𝑠+1
 𝐿−1   

3𝑠+7

(𝑠2−2𝑠−4)1 
 

                     = 4 𝐿−1   
1

𝑠−3
 - 𝐿−1   

1

𝑠+1
 

                  = 4𝑒3𝑡 − 𝑒−𝑡 
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 𝐵𝑒𝑐𝑎𝑢𝑠𝑒             𝐿−1   
1

𝑠−𝑎
 =  𝑒𝑎𝑡 

                                                                   L 𝑒a𝑡 =  
1

𝑠−𝑎
 

 

 

 

 

4.14 Dirac delta function: 

We know that  

                                                 ∫ 𝑓(𝑡)
∞

0
 𝛿(𝑡 − 𝑎) = f(a) 

Replacing f(t) by e-st  in above equation, we get 

                                                 ∫ 𝑒−𝑠𝑡∞

0
 𝛿(𝑡 − 𝑎) = [ e-st   ]𝑡=𝑎 

                                                                           = e-sa    

                                                            L(𝛿(𝑡 − 𝑎)) = e-sa    

                      If a = 0, then L (𝛿(𝑡)) = 1 

 

Example: 

                          Find the Laplace transform of t3 𝛿(𝑡 − 4) 

Solution: 

                                L(t3 𝛿(𝑡 − 4)) =  ∫    e−st 
∞

0
𝑡3 𝛿(𝑡 − 𝑎) dt 

                                                           = 43   e-4s    

 

 

Example: 

                          Find the laplace transform of e-4t  𝛿(𝑡 − 3) 

Solution: 

L(e-4t  𝛿(𝑡 − 3)) =             ∫ 𝑒−𝑠𝑡∞  

0
 e−4t 𝛿(𝑡 − 𝑎) dt 

                               = e-3(x +4)   
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4.15 Application: 

Potential problem in semi – infinite strip: 

    Laplace’s equation ∇2u = 0 inside a semi-infinite strip (0 < x < ∞, 0 < y < H) with the 

following boundary conditions:  

                                U (x,0) = 0, u(x,H) = 0, u(0,y) = f(y). 

 

using separation of variables 

a linear combination of solutions of Laplace's equation of the form X ( x ) Y ( y ) . Then 

                                            𝛻2 (XY) = X”(x) Y(y) +X(x) Y”(y) = 0 

                  so that                   
𝑋"

𝑋
+ 

𝑌"

𝑌
 = 0 

The first term on the left is a function only of x and the second a function only of y. The 

only way this equation can hold for all x and y is if each term is constant. Hence    

                                    X” = CXY” = - CY  

For some real constant C.  the values of C depend on the boundary conditions, which 

are   X(0) = 1 ,     lim
𝑥→∞

𝑋(𝑥) = Y(0) = Y(h) = 0 

With Y(y) not identically zero. 

The easiest boundary condition to satisfy is that X(x) → 0 as x→ ∞.  

                                X(x) = 𝑒−𝑘𝑥    for some k > 0 

                                               Y” = -k2 Y 

Subject to Y(0) = Y(h) = 0 but with Y(y) not identically zero. That can be done if k = 
𝑛𝜋

ℎ
 . n is 

some positive integer. 

                                                        Y(y) = B sin (
𝑛𝜋𝑦

ℎ
) 

Eigenfunction,                              Xn(x) Yn(y) = 𝑒
−𝑛𝜋𝑦

ℎ  𝑒
𝑛𝜋𝑦

ℎ  

The linear combination of above equation is 

                                                      u(x,y) = ∑ an∞
𝑛=1  𝑒

−𝑛𝜋𝑦

ℎ  𝑒
𝑛𝜋𝑦

ℎ  

the coefficient an to satisfy the boundary condition u(0,y) = f(y). then  
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                                                f(y) = u (o,y) = ∑ an∞
𝑛=1   𝑒

𝑛𝜋𝑦

ℎ  

which is the fourier sine series for f(y) on the interval 0 ≤ 𝑦 ≤ ℎ.  thus 

                                                an = 
2

ℎ
 ∫ 𝑓(𝑦) sin  (

𝑛𝜋𝑦

ℎ
)

ℎ

0
 dy 
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UNIT V:  DIFFERENTIAL EQUATIONS 

Second order differential equation- Sturm - Liouville’s theory - Series solution with simple 

examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence 

relations – Legendre polynomials – Generating function -Rodrigue formula –Orthogonality 

properties -Dirac delta function - One dimensional Green’s function and Reciprocity theorem-

Sturm- Liouville’s type equation in one dimension & their Green’s function.  

5.1 Second order differential equation : 

The general form of the  linear differential equation of second order is 

ⅆ2𝑦

ⅆ𝑥2 + 𝑃
ⅆ𝑦

ⅆ𝑥
 + Q y = R 

Where P and Q are constants and R is a function of x or constant 

5.2 STRUM-LIOUVILLE EQUATION : 

ⅆ

ⅆ𝑥
 [ 𝑝(𝑥) . 

ⅆ𝑦

ⅆ𝑥
 ] + [ q (x) + r (x)] y = 0 

Solution.  

We know that Bessel’s equation is 

X2  
ⅆ2𝑦

ⅆ𝑋2 + X 
ⅆ𝑦

ⅆ𝑋
 + (X2 - n2) y = 0 ---------------------(1) 

Substituting X = kx in (1), we get 

ⅆ𝑦

ⅆ𝑋
=  

ⅆ𝑦

ⅆ𝑥
 
ⅆ𝑥

ⅆ𝑋
 = 

ⅆ𝑦

ⅆ𝑋
 
1

𝑘
  and  

ⅆ2𝑦

ⅆ𝑋2 = 
ⅆ2𝑦

ⅆ𝑥2 
1

𝑘2 

𝑘2 x2  ( 
ⅆ2𝑦

ⅆ𝑋2

1

𝑘2) + k x ( 
ⅆ𝑦

ⅆ𝑥
 

1

𝑘
) + (𝑘2𝑥2   − 𝑛2) y = 0 

x2  
ⅆ2𝑦

ⅆ𝑋2
 + x 

ⅆ𝑦

ⅆ𝑋
 + (𝑘2x2 - n2) y = 0 

x  
ⅆ2𝑦

ⅆ𝑋2 +  
ⅆ𝑦

ⅆ𝑋
 + (𝑘2x2 - 

𝑛2

𝑥
) y = 0 

[x  
ⅆ2𝑦

ⅆ𝑋2 +  
ⅆ𝑦

ⅆ𝑋
 ]+ (𝜆x - 

𝑛2

𝑥
) y = 0             (Put k2 = ) 

ⅆ

ⅆ𝑥
 [ 𝑝(𝑥) . 

ⅆ𝑦

ⅆ𝑥
 ] + [ x - 

𝑛2

𝑥
] y = 0                       -------------(2) 
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Equations (1) and (2) are of the form. 

ⅆ

ⅆ𝑥
 [ 𝑝(𝑥) . 

ⅆ𝑦

ⅆ𝑥
 ] + [ q (x) + r (x)] y = 0  ……………… (3) 

Equation (3) is known as the Strum-Liouville equation. 

Equation (3) with the following conditions is known as Strum-Liouville problem. 

1 y (a) + 2 y (a) = 0 

1 y (b) + 2 y (b) = 0 

Solution of Strum-Liouville problem is called an eigen function where  is an eigen value. 

Particular Case.  Putting p = 1, q = 1, r = 0 in (3), we have 

ⅆ2𝑦

ⅆ𝑋2 +  y = 0 

Now taking conditions a1s = 1 = 1 and 2 = 2 = 0 

                                               y (a) = 0 and y (b) = 0 

Hence                   y +  y = 0 

                             y (a) = 0, y (b) = 0    

             These are the simplest form of Strum -  Liouville problem 

5.3 Hermite polynomial: 

Hermite differential equation is 

                                             
ⅆ2𝑦

ⅆ𝜘2 − 2𝑥
ⅆ𝑥̅̅ ̅̅
ⅆ𝑦

+ 2𝑛𝑦 = 0 --------------(1) 

Where n is positive integer. Solution for this equation is known as Hermite function. To find 

singular points and series solution of the equation, consider 𝑃 𝑥 = −2𝑥 𝑎𝑛𝑑 𝑄 𝑥 = 2𝑛 

There are no singular points. By Fuchs theorem, Hermite differential equation has a series 

Solution 

                                                y =  ∑ 𝑎𝑚 ∞
𝑚=0  𝑥𝑘−𝑚 𝑎0 ≠ 0                                           -------------(2) 

On differentiating equation (1) with respect to 𝑥, we get 

                                                 1
ⅆ𝑥̅̅ ̅̅
ⅆ𝑦

 =  ∑ 𝑎𝑚 (𝑘 − 𝑚) ∞
𝑚=0  𝑥𝑘−𝑚−1                                --------------(3) 

                                      
ⅆ2𝑦

ⅆ𝜘2
 = ∑ 𝑎𝑚 (𝑘 − 𝑚) (𝑘 − 𝑚 −  1)∞

𝑚=0  𝑥𝑘−𝑚−2                        ------------(4) 
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Using 1, 2, 3, 4 we get, 

           ∑ 𝑎𝑚 (𝑘 − 𝑚) (𝑘 − 𝑚 −  1)∞
𝑚=0  𝑥𝑘−𝑚−2   + ∑ 𝑎𝑚 2 (𝑛 − 𝑘 +  𝑚)∞

𝑚=0  𝑥𝑘−𝑚    =  0 -----(5) 

(5) is polynomial equation. Equating the coefficient of the highest power of 𝑥 to zero, 

                       ie.,   𝑎0 (𝑛 – 𝑘) = 0 

since          𝑎0 ≠ 0, 𝑘 = 𝑛, then equating the coefficient of 𝑥𝑘−1 to zero 

,ie.,                      𝑎1 (𝑛 − 𝑘 + 1) = 0   

 For 𝑘 = 𝑛   we have        (𝑛 − 𝑘 + 1) ≠ 0 and therefore,  

                                                           𝑎1 = 0. 

  Further  equating the coefficient of 𝑥𝑘 −𝑟 to zero, we get 

                                           𝑎𝑟−2 (𝑘 − 𝑟 + 2 )(𝑘 − 𝑟 + 1) + 2𝑎𝑟 (𝑛 − 𝑘 + 𝑟) = 0 

                                                           𝑎𝑟 = - 
(𝑘−𝑟+2)(𝑘−𝑟+1)

2(𝑛−𝑘+𝑟)
  𝑎𝑟−2    ------------------(6) 

Since 𝑎1 = 0 equation (6) gives 𝑎3 = 𝑎5 = 𝑎7 ⋯ ⋯ = 0 then for 𝑘 = 𝑛, we have 

                                                           𝑎𝑟 = - 
(𝑛−𝑟+2)(𝑛−𝑟+1)

2𝑟
  𝑎𝑟−2     

𝑎2 = − 
𝑛(𝑛−1)

2.2
 a0 

a4 = − 
(𝑛−2)(𝑛−3)

2.6
 a2  =  

𝑛(𝑛−1)(𝑛−1)(𝑛−3)

24.3 !
 a0   

a6 = − 
(𝑛−4)(𝑛−5)

2.6
 a4  =  

𝑛(𝑛−1)……….(𝑛−5)

26.3 !
 a0   

. 

. 

. 

a2r = (−1)𝑟  
𝑛 (𝑛−1)……..(𝑛−2𝑟+1)

22𝑟.6
 a0  =  

 (−1)𝑟𝑛 !

22𝑟.𝑟 !(𝑛−2𝑟)!
 a0   -----------------(7) 

Let 𝑎0 = 2𝑛 and substitute in (7) we get 

                                      a2r = 
 (−1)𝑟𝑛 !

22𝑟−𝑛.𝑟 !(𝑛−2𝑟)!
 ----------------(8) 

Since 𝑎1 = 𝑎3 = 𝑎5 = 𝑎7 ⋯ ⋯ = 0 then equation can be written as 
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                                                y =  ∑ 𝑎2𝑟 ∞
𝑟=0  𝑥𝑛−2𝑟 𝑎0 ≠ 0  -----------------(9) 

Substitute (9) in (8) we get solution of Hermite differential equation denoted by (𝑥) 

y= (𝑥) =  ∑  ∞
𝑟=0

 (−1)𝑟𝑛 !

22𝑟−𝑛.𝑟 !(𝑛−2𝑟)!
 Xn – 2r 

                             =  ∑  𝑁
𝑟=0

 (−1)𝑟𝑛 !

𝑟 !(𝑛−2𝑟)!
  ( 2X )n – 2r 

 

Some Specific cases for 𝐻𝑛 (𝑥): 

(i) 𝐻𝑛 (x)= 1 

(ii) 𝐻1( 𝑥 )= 2𝑥 

(iii) 𝐻2( 𝑥 )= 4𝑥2 − 2 

(iv) 𝐻3( 𝑥 )= 8𝑥3 − 12𝑥 

(v) 𝐻4( 𝑥 )= 16𝑥4 − 48𝑥2 + 12 

(vi) 𝐻5( 𝑥 )= 32𝑥5 − 160𝑥3 + 120𝑥 

(vii) 𝐻6( 𝑥 )= 64𝑥6 − 480𝑥4 + 720𝑥2 – 120 

(viii) 𝐻𝑛 (0 )= 
 (−1)𝑛/2𝑛 !

(𝑛/2)!
  when 𝑛 is even integer 

(ix) 𝐻𝑛 (0 )= 0 when 𝑛 is odd integer 

(x) 𝐻𝑛 −𝑥 = (−1)𝑛
 𝐻𝑛 𝑥 

5.4 Generating function for(𝑥):  

The function e2𝑥𝑡 −𝑡2  is known as generating function for Hermite function. The coefficient of 

𝑡𝑛 in the expansion is  
𝐻𝑛(𝑥)

𝑛!
   ie.    𝑒2𝑥𝑡−𝑡2

  = 𝛴  
𝐻𝑛(𝑥)

𝑛!
 𝑡𝑛  

Proof:  

     we know that           e2𝑥𝑡   = ∑  ∞
𝑟=0

 (2𝑥)𝑟   𝑡𝑟 

𝑟!
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And                                    𝑒−𝑡−2
    = ∑  ∞

𝑟=0
 (−1)𝑠  𝑡2𝑠 

𝑠!
 

                                e2𝑥𝑡    e-𝑡^-2    =  ∑  ∞
𝑟=0

 (2𝑥)𝑟 𝑡𝑟

𝑟!
 ∑  ∞

𝑟=0
 (−1)𝑠  𝑡2𝑠

𝑠!
 

                                     𝑒2𝑥𝑡−𝑡2
  =  ∑ ∑

 (−1)𝑠(2𝑥)𝑟 tn

𝑠! 𝑟!

∞

𝑠=0

∞

𝑟=0

 

Put 𝑟 = 𝑛 − 2𝑠 in above equation we get 

                                 𝑒2𝑥𝑡−𝑡2
  =  ∑ ∑

 (−1)𝑠(2𝑥)𝑛−2𝑠 tn

𝑠!(𝑛−2𝑠)!

∞

𝑠=0

∞

𝑛=2𝑠

 

This shows that the coefficient of 𝑡𝑛 of the expansion of 𝑒2𝑥𝑡−𝑡2
   is  

𝐻𝑛(𝑥)

𝑛!
  

5.5 Recurrence relations for(𝑥): 

The relations among various orders of the Hermite function are known as recurrence 

relations 

                          (i)                  We know that   𝑒2𝑥𝑡−𝑡2
  = 𝛴  

𝐻𝑛(𝑥)

𝑛!
 𝑡𝑛  ------------------(1) 

Differentiating above equation  with respect to 𝑡, we get 

                                              𝑒2𝑥𝑡−𝑡2
(2x – 2t)  = 𝛴  

𝐻𝑛(𝑥)

𝑛!
 𝑛  𝑡𝑛 - 1  -----------------(2) 

Substitute (2) in (1) we get 

                                                    2x 
𝐻𝑛(𝑥)

𝑚!
 -  2 

𝐻𝑚−1(𝑥)

𝑚−1!
 = 

𝐻𝑚+1(𝑥)

𝑚!
 

                                                 2𝑥𝐻𝑚 (x )= 𝐻𝑚+1  (𝑥 )+ 2𝑚𝐻𝑚 −1  (𝑥) --------------(3) 

                     (ii)      Differentiating equation (1) with respect to 𝑥, we get 

                                                    𝑒2𝑥𝑡−𝑡2
2t = 𝛴  

𝐻′𝑛(𝑥)

𝑛!
   𝑡n -----------------(4)  

Substitute equation (1) in (4) we get 

                                                 2t  𝛴  
𝐻𝑛(𝑥)

𝑛!
   𝑡= 𝛴  

𝐻′𝑛(𝑥)

𝑛!
   𝑡𝑛   -----------------(5) 
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  Equating the coefficient of 𝑡𝑚 on both of (5) we get 

                                                    2 
𝐻𝑚−1(𝑥)

(𝑚−1)!
  =  

𝐻′𝑛(𝑥)

𝑚!
      Or 

                                                        2m 𝐻𝑚-1 (x)= 𝐻’𝑚(𝑥)   ----------------(6) 

                               (iii)  Equating the coefficient 𝑡0 we get 𝐻𝑚 ′  (x)= 0 

                                (iv)  Substitute the value of 2𝑚𝐻𝑚 −1 (𝑥) from  above equation we get 

                                                            2m𝐻𝑚−1 (x) = 𝐻𝑚+1 (x ) + 𝐻𝑚 ′( 𝑥) 

 

5.6 Orthogonality properties: 

The orthogonal property of Hermite polynomials is 

∫ 𝑒−𝑥2∞

−∞
 ( 𝑥) 𝐻n( 𝑥) dx = 0,                     m≠ 𝑛 

              2n  n!  √𝜋 ,                                      m = n 

 

 Solution: 

we know that                         𝑒𝑥2−(𝑡1−𝑥))2
 =∑

𝐻𝑛(𝑥)

𝑛!
   t1^n   (generating function) -----(1) 

                                                   𝑒𝑥2−   (𝑡2−𝑥))2   =∑
𝐻𝑛(𝑥)

𝑛!
     t 2^n                                               ------(2) 

Multiplying (1) and (2) we get  

                          𝑒𝑥2−( 𝑡1−𝑥)2
 . 𝑒𝑥2−(  𝑡2−𝑥)2

 = [∑
𝐻𝑛(𝑥)

𝑛!
   t1n ] [∑

𝐻𝑛(𝑥)

𝑛!
   t2n ] 

                                                                        = ∑ [ 
𝐻𝑛(𝑥)

𝑛!
   t1n  |  ∑

𝐻𝑛(𝑥)

𝑛!
   t2n ]∞

𝑛=0
𝑚=0

𝑡1
𝑛𝑡2

𝑚

𝑛!𝑚!
 

Multiplying both side of this equation by 𝑒  −𝑥2   and then integrating with the limits for  

-∞ to ∞, we have 

∑  ∫ 𝑒  −𝑥2 ∞

−∞
[

𝐻𝑛(𝑥)

1
   t1n  |  ∑

𝐻𝑛(𝑥)

1
   t 2n ]∞

𝑛=0
𝑚=0

𝑡1
𝑛𝑡2

𝑚

𝑛!𝑚!
  

                                                   = 𝑒−𝑥2
 ∫  𝑒𝑥2−( 𝑡1−𝑥)2

 . 𝑒𝑥2−(𝑡2−𝑥)2
  . dx

∞

−∞
 

                                                   = ∫  𝑒(𝑥2−(𝑡1−𝑥)2)−( 𝑡2 −𝑥)2
    dx

∞

−∞
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                                                   = 𝑒−( 𝑡1
2+  𝑡2

2 ) ∫  𝑒(𝑥2−2𝑥 (  𝑡1 +  𝑡2)1)    dx
∞

−∞
   -----------(3) 

We know that 

                                          ∫  𝑒(−𝑎𝑥2+2𝑏𝑥)  dx =  √
π

2
e

b2

a
∞

−∞
   (Standard formula)      ------------(4) 

Replacing by (t1 + t2) and by 1 in (4) we get, 

                                       ∫  𝑒(𝑥2−2𝑥(  𝑡1  + 𝑡2  )1)    dx
∞

−∞
=  √𝜋  𝑒( 𝑡1 + 𝑡2  )2

 ----------------(5) 

Putting the value of  ∫  𝑒(𝑥2−2𝑥( 𝑡1  + 𝑡2 )1)    dx
∞

−∞
 𝑓𝑟𝑜𝑚   (5) in R.H.S of (3) we get 

                  𝑒(  𝑡1  +  𝑡2 )2
 . √𝜋  𝑒(  𝑡1 +  𝑡2)2

 = √𝜋  𝑒−𝑡1
2− −𝑡2

2+ 𝑡1
2+ 𝑡2

2 + 2 𝑡1  𝑡2  = √𝜋𝑒2  𝑡1  𝑡2  

                                                              = √𝜋 [  1 + 2 t1t2 + 
(2 𝑡1  𝑡2)2

2!
 +

(2𝑡1  𝑡2 )3

3!
 + ………] 

                                                 = √𝜋 ∑
(2  𝑡1  𝑡2 )n

n!
  

                                                 = √𝜋 ∑  
2𝑛𝑡1

𝑛𝑡2
𝑛

𝑛!
  

                                                 = √𝜋  ∑ 2𝑛𝑡1
𝑛𝑡2

𝑛  ∞
𝑚=0
𝑛=0

𝛿m.n 

From (3) we have 

             ∑  ∫ 𝑒−𝑥^2∞

−∞
[

𝐻𝑛(𝑥)

1
   t1n  |  ∑

𝐻𝑛(𝑥)

1
   t2n ]∞

𝑛=0
𝑚=0

𝑡1
𝑛𝑡2

𝑚

𝑛!𝑚!
=  √𝜋 ∑  

2𝑛𝑡1
𝑛𝑡2

𝑛

𝑛!
 

On equating the coefficients of  𝑡1
𝑛𝑡2

𝑚 on both sides, we get 

∫ 𝑒−𝑥2∞

−∞
 
𝐻𝑛(𝑥)𝐻𝑚(𝑥)

𝑛!𝑚!
 = √𝜋

2𝑛

𝑛!
 𝛿m.n  

∫ 𝑒−𝑥2∞

−∞
 
𝐻𝑛(𝑥)𝐻𝑚(𝑥)

𝑛!𝑚!
 = √𝜋

2𝑛

1
 𝑚! 𝛿m.n 

∫ 𝑒−𝑥2∞

−∞
 
𝐻𝑛(𝑥)𝐻𝑚(𝑥)

𝑛!𝑚!
 =    0    ,             m≠ 𝑛 

                         √𝜋 2𝑛 𝑚!,                                      m = n 
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Example: 

                   Find the value of  ∫ 𝑒−𝑥2∞

−∞
  𝐻2(𝑥)  𝐻3(𝑥) dx   

Solution: 

We know that 

                             ∫ 𝑒−𝑥2∞

−∞
    𝐻2(𝑥)  𝐻3(𝑥) dx = 0     if m ≠ 𝑛  

Here m = 2 and n = 3 , m ≠ 𝑛 

                       Hence,                  ∫ 𝑒−𝑥2∞

−∞
   𝐻2(𝑥)  𝐻3(𝑥) dx = 0    

 

 

 

5.7 LEGENDRE’S EQUATION: 

Since Pn (x) and Qn (x) are two independent solutions of Legendre’s equation, therefore 

the most general solution of Legendre’s equation is 

                                                             y = APn (x) + B Qn (x) 

where A and B are two arbitrary constants. 

 

5.8 RODRIGUE’S FORMULA: 

                                                 Pn (x) =  
1

2𝑛 𝑛!

ⅆ𝑛

ⅆ𝑥𝑛
(𝑥2 − 1)𝑛 

Proof: 

                                        Let v =  (𝑥2 − 1)𝑛  −−−−−−−−−−−−() 

                         Then                
ⅆ𝑦

ⅆ𝑥
 =  𝑛 (𝑥2 − 1)𝑛 (2x) 

Multiplying both sides by (x2 − 1), we get 

(x2 − 1) 
ⅆ𝑦

ⅆ𝑥
  =   2𝑛 (𝑥2 − 1)𝑛 x  

(x2 − 1) 
ⅆ𝑦

ⅆ𝑥
  =   2 𝑛 𝑣 𝑥              ----------------(2) 
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Now differentiating (2), (n + 1) times by Leibnitz’s theorem, we have 

(x2 − 1) 
ⅆ𝑛+2 𝑣

ⅆ𝑥𝑛+2  + (𝑛 + 1)𝐶1
 (x) 

ⅆ𝑛+1 𝑣

ⅆ𝑛+1
 –  (𝑛 + 1)𝐶2

 () 
ⅆ𝑛 𝑣

ⅆ^𝑛
 = 2n [ x 

ⅆ𝑛+1 𝑣

ⅆ𝑥𝑛+1  + (𝑛 + 1)𝐶1
 () 

ⅆ𝑛+1 𝑣

ⅆ𝑛+1
] 

      (x2 − 1) 
ⅆ𝑛+2 𝑣

ⅆ𝑥𝑛+2
 +  x [ (𝑛 + 1)𝐶1

− 𝑛] 
ⅆ𝑛+1 𝑣

ⅆ𝑥𝑛+1
 + 2 [ (𝑛 + 1)𝐶2

− 𝑛. (𝑛 + 1)𝐶1
]  

ⅆ𝑛 𝑣

ⅆ𝑥^𝑛
 =  0 

                                 (x2 − 1) 
ⅆ𝑛+2 𝑣

ⅆ𝑥𝑛+2
 +  x 

ⅆ𝑛+1 𝑣

ⅆ𝑥𝑛+1
 - n(n + 1) 

ⅆ𝑛 𝑣

ⅆ𝑥^𝑛
 = 0 ------------(3) 

If we put  
ⅆ𝑛 𝑣

ⅆ𝑥𝑛  = y (3) become, 

                                 (x2 − 1) 
ⅆ2 𝑦

ⅆ𝑥2
 +  x 

ⅆ𝑦

ⅆ𝑥
  - n (n + 1) y = 0 

                                 ( − x2) 
ⅆ2 𝑦

ⅆ𝑥2  −  x 
ⅆ𝑦

ⅆ𝑥
  +n (n + 1) y = 0 

This shows that y =  
ⅆ𝑛 𝑦

ⅆ𝑥𝑛  is a solution of Legendre’s equation 

                                            C 
ⅆ𝑛 𝑦

ⅆ𝑥𝑛  =Pn(x) -----------(4) 

where  C is a constant. 

                              But  v  =  (𝑥2 − 1)𝑛 =   (𝑥1 +  1)𝑛  (𝑥1 −  1)𝑛 

 
ⅆ𝑛 𝑣

ⅆ𝑥𝑛  =  (x + 1)n ⅆ
𝑛  (𝑥−1)𝑛

ⅆ𝑥𝑛 
 + 𝑛𝐶1

 . n (x + 1)n  ⅆ𝑛−1 

ⅆ𝑥𝑛−1  (x + 1)n  + ……+  (x - 1)n  ⅆ𝑛−1 

ⅆ𝑥𝑛−1  (x + 1)n   = 0 

when x = 1,             
ⅆ𝑛 𝑣

ⅆ𝑥𝑛  = 2𝑛 𝑛! 

All the other terms disappear as (x – 1) is a factor in every term except first. 

Therefore when x = 1, (4) gives 

                                                     C. 2𝑛 𝑛! = Pn(1) =1    

                                                                       C = 
1

2𝑛 𝑛!
                 -------------(5) 

Substituting the value of C from (1) in (5) we have 

                                                 Pn (x) =  
1

2𝑛 𝑛!

ⅆ𝑛 𝑣

ⅆ𝑥𝑛  

                                                 Pn (x) =  
1

2𝑛 𝑛!

ⅆ𝑛

ⅆ𝑥𝑛
(𝑥2 − 1)𝑛 
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Example: 

                   Let Pn (x) be the Legendre polynomial of degree n. Show that for any function, f (x), 

for which the nth derivative is continuous, 

                                   ∫  𝑓(𝑥)𝑃𝑛(𝑥)𝑑𝑥 = 
1

−1
 
(−1)𝑛

2𝑛 𝑛!
 ∫ (𝑥2 − 1)𝑛  

1

−1
𝑓𝑛 (𝑥)𝑑𝑥 

Solution: 

                           ∫  𝑓(𝑥)𝑃𝑛(𝑥)𝑑𝑥 = 
1

−1
 
(−1)𝑛

2𝑛 𝑛!
 ∫ (𝑥2 − 1)𝑛  

1

−1
𝑓𝑛 (𝑥)𝑑𝑥 

                                                 Pn (x) =  
1

2𝑛 𝑛!

ⅆ𝑛

ⅆ𝑥𝑛
(𝑥2 − 1)𝑛 

                                                            = 
1

2𝑛 𝑛!
 ∫ 𝑓(𝑥)

1

−1
 

ⅆ𝑛

ⅆ𝑥𝑛
(𝑥2 − 1)𝑛 dx 

Integrating by parts, we get  

= 
1

2𝑛 𝑛!
 [ f(x) 

ⅆ𝑛

ⅆ𝑥𝑛
(𝑥2 − 1)𝑛 - ∫ 𝑓′(𝑥) 

ⅆ𝑛

ⅆ𝑥𝑛
(𝑥2 − 1)𝑛𝐽−1

+1 

= 
1

2𝑛 𝑛!
 [ 0 - ∫ 𝑓′(𝑥)

1

−1
 

ⅆ𝑛−1

ⅆ𝑥𝑛−1
(𝑥2 − 1)𝑛 dx]  

= 
(−1)

2𝑛 𝑛!
  ∫ 𝑓′(𝑥)

1

−1
 

ⅆ𝑛−1

ⅆ𝑥𝑛−1
(𝑥2 − 1)𝑛 dx 

Again integrating by parts, we have  

                                    = 
(−1)

2𝑛 𝑛!
 [ f’ (x)

ⅆ𝑛−1

ⅆ𝑥𝑛−1
(𝑥2 − 1)𝑛  - ∫ 𝑓"(𝑥)  

ⅆ𝑛−2

ⅆ𝑥𝑛−2
(𝑥2 − 1)𝑛 𝑑𝑥 𝐽−1

+1 

                                    = 
(−1)^2

2𝑛 𝑛!
  ∫ 𝑓"(𝑥)

1

−1
 

ⅆ𝑛−1

ⅆ𝑥𝑛−1
(𝑥2 − 1)𝑛 dx 

Integrating (n – 2) times, by parts, we get 

                                     = 
(−1)𝑛

2𝑛 𝑛!
 ∫ (𝑥2 − 1)𝑛  

1

−1
𝑓𝑛 (𝑥)𝑑𝑥                          Proved. 
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5.9 LEGENDRE POLYNOMIALS: 

                                           Pn (x) =  
1

2𝑛 𝑛!

ⅆ𝑛

ⅆ𝑥𝑛
(𝑥2 − 1)𝑛  

           If n = 0,               P0 (x) =  
1

20 0!
 =  

           If n = 1,              P1 (x) = 
1

21 1!

ⅆ1

ⅆ𝑥1
(𝑥2 − 1)1 = () (2 x) = x 

             If n = 2,            P2 (x) = 
1

22 2!

ⅆ2

ⅆ𝑥2
(𝑥2 − 1)2 = 

1

8
 

ⅆ

ⅆ𝑥
 (  (x2 -2)(x) ) 

                                              = 
1

2
 ((x2 -1).1 + 2x . x) =  

1

2
 (x2 -1).  

similarly                              P3 (x) = 
1

2
 (x3 -3x).                                         

                                     P4 (x) = 
1

8
 (x4 -3x2  +3).  

                                     P5 (x) = 
1

8
 (x5 - 70x3  + 15 x). 

                                              

                            Pn (x) = ∑
2!

2𝑛 .𝑟 (𝑛−𝑟)!(𝑛−2𝑟)!
 𝑥𝑛−2𝑟

𝑁

𝑟=0
    

                        where                N =  
𝑛

2
  if n is even. 

                                                 N =  
𝑛

2
 (n − 1) if n is odd. 
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Example: 

                     Express f (x) = 4 x3 + 6 x2 + 7 x + 2 in terms of Legendre Polynomials. 

Solution. 

 Let          4 x3 + 6 x2 + 7 x + 2  a P3 (x) + b P2 (x) + c P1 (x) + d P0 (x) ………..(1) 

                                                 = a(
5𝑥3

2
− 

3𝑥

2
 ) + b (

3𝑥2

2
− 

1

2
 ) + c (x) + d (1) 

                                                 = 
5𝑎𝑥3

2
 − 

3𝑎𝑥

2
 + 

5𝑏𝑥2

2
 − 

𝑏 

2
 + cx + d 

                                                 = 
5𝑎𝑥3

2
+ 

5𝑏𝑥2

2
 +  (

−3𝑎

2
+ 𝑐) x - 

𝑏 

2
 + d 

Equating the coefficients of like powers of x, we have 

4 = 
5𝑎 

2
  ,  or   a = 

8 

5
 

6 = 
3𝑏 

2
 ,  or    b = 4 

7 =  
−3𝑎 

2
 +c    or  7 = 

−3 

2
(

8

5
)  +  c      or c = 

47 

5
 

2 =  
−𝑏 

2
 + d   or  2 =  

−4 

2
 +d   or   d = 4       

Putting the values of a, b, c, d in (1), we get  

            4 x3 + 6 x2 + 7 x + 2 =  
8 

5
 P3 (x) + 4 P2 (x) + 

47 

5
 P1 (x) + 4 P0 (x) 

5.10     A GENERATING FUNCTION OF LEGENDRE’S POLYNOMIAL: 

Prove that Pn (x) is the coefficient of z n in the expansion of (1 − 2 xz + z2)− 1/2 in ascendig 

powers of   z. 

Proof.  

                          (1 − 2 xz + z2)− = [1 − z (2 x − z)]− 

                                                       =  + 
1

2
 z (2 x − z) + 

−
1

2
(−

3

2
)

2!
𝑧2(2𝑥 − 𝑧)2+ 

                                                          + 
−

1

2
(−

3

2
 )

−5

2
……(

−1

2
−𝑛+1)

𝑛!
(−𝑧)𝑛(2𝑥 − 𝑧)𝑛 +      −−−−−() 

Now coefficient of zn in 
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−
1

2
(−

3

2
 )

−5

2
……(

−1

2
−n+1)

n!
(−z)n(2𝑥 − 𝑧)𝑛 = 

−
1

2
(−

3

2
 )

−5

2
……(

−1

2
−𝑛+1)

𝑛!
(−1)𝑛(2𝑥)𝑛 

                     = 
1.3.5……(2𝑛−1)

2𝑛 𝑛!
  (2)𝑛(𝑥)𝑛 

                                                             = = 
1.3.5……(2𝑛−1)

2𝑛 𝑛!
  (𝑥)𝑛 

Coefficient of zn in 

−
1

2
(−

3

2
 )

−5

2
……(

−1

2
−𝑛+2)

(𝑛−1)!
(−𝑧)𝑛−1(2𝑥 − 𝑧)𝑛−1  

                                     = 
−

1

2
(−

3

2
 )

−5

2
……(

−1

2
−𝑛+2)

(𝑛−1)!
(−1)𝑛(−(𝑛 − 1)(2𝑥)𝑛−2) 

                     = 
1.3.5……(2𝑛−3)

2𝑛−1 (𝑛−1)!
  (2)𝑛−2  (𝑛 − 1)(𝑥)𝑛−1 

                                                        = 
1.3.5……(2𝑛−3)

21 (𝑛−1)!
  (𝑛 − 1)(𝑥)𝑛−2 

                                                        = 
1.3.5……(2𝑛−3)

21 (𝑛−1)!
  

(2𝑛−1)

(2𝑛−1)
(𝑛 − 1)(𝑥)𝑛−2 

                                                        = 
1.3.5……(2𝑛−3)

 𝑛!
  

(2𝑛−1)

1

𝑛(𝑛−1)

2(2𝑛−1)
(𝑥)𝑛−2 

Coefficient of zn in 

  
 −

1

2
(−

3

2
 )

−5

2
……(

−1

2
−𝑛+3)

(𝑛−2)!
(−𝑧)𝑛−2(2𝑥 − 𝑧)𝑛−1  

                                       = 
−

1

2
(−

3

2
 )

−5

2
……(

−1

2
−𝑛+3)

(𝑛−2)!
 (−1)𝑛−2  (𝑛−2)(𝑛−3)

 2!
  (2𝑥)𝑛−4   

                                       = 
1.3.5……(2𝑛−5)

2𝑛−2 (𝑛−2)!
 
(𝑛−2)(𝑛−3)

 2!
  (2𝑥)𝑛−4   
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                                        = 
1.3.5……(2𝑛−5)(2𝑛−3)(2𝑛−1)

4 (𝑛−2)!
 

(𝑛−2)(𝑛−3)

 2(2𝑛−3)(2𝑛−1)
  (𝑥)𝑛−4   

                                       = 
1.3.5……(2𝑛−1)

4𝑛 ( 𝑛−1 ) (𝑛−2)!
 
𝑛(𝑛−1)(𝑛−2)(𝑛−3)

 2(2𝑛−3)(2𝑛−1)
  (𝑥)𝑛−4   

                                       = 
1.3.5……((2𝑛−1)

𝑛!
 
𝑛(𝑛−1)(𝑛−2)(𝑛−3)

 2.4(2𝑛−3)(2𝑛−1)
  (𝑥)𝑛−4   

and so on. 

        Thus coefficient of zn in the expansion of (1) 

              = 
1.3.5……((2𝑛−1)

𝑛!
 [ xn - 

𝑛(𝑛−1)

 2(2𝑛−1)
 (𝑥)𝑛−2   + 

𝑛(𝑛−1)(𝑛−2)(𝑛−3)

 2.4(2𝑛−3)(2𝑛−1)
  (𝑥)𝑛−4   -……….] 

              = Pn (x) 

Thus coefficients of z, z2, z3 ... etc. in (1) are P1 (x), P2 (x), P3 (x) 

Hence 

(1 − 2 xz + z2)− 1/2 = P0 (x) + zP1 (x) + z2P2(x) + z3P3 (x) ++ znPn (x) +  

 

                        (1 − 2 xz + z2)− 1/2 = ∑ 𝑃𝑛 (𝑥)𝑛= ∞
𝑛=0   zn                                        proved. 

Example:  

                             Prove that Pn (1) = 1. 

Solution.  

         We know that  

(1 − 2 xz + z2)-1/2 = 1 +  zP1 (x) + z2P2(x) + z3P3 (x) ++ znPn (x) +  

Substituting 1 for x in the above equation, we get 

(1 − 2 z + z2)-1/2 = 1 +  zP1 (1) + z2P2(1) + z3P3 (1) ++ znPn (1) +  

((1 −  z ))-1/2 =  ∑ 𝑃𝑛 (1)𝑛= ∞
𝑛=0   zn 

     (1 −  z ))-1 =   ∑ 𝑃𝑛 (1) zn 

                                     ∑ 𝑃𝑛 (1) zn  = (1 −  z ))-1  =  1 + z + z2 + z3 +  + zn +  
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5.11 ORTHOGONALITY OF LEGENDRE POLYNOMIALS: 

∫ 𝑃𝑚 (𝑥). 𝑃𝑛 (𝑥)𝑑𝑥 =  0         𝑛 ≠ 𝑚

+1

−1

 

Proof.  

Pn (x) is a solution of 

                                      (1 −  𝑥2)
ⅆ2𝑦

ⅆ𝜘2
− 2𝑥

ⅆ𝑦

ⅆ𝑥
  +  n (n + 1)y  =  0   ------------(1) 

Pm (x) is the solution of 

                                      (1 −  𝑥2)𝑐 − 2𝑥
ⅆ𝑧

ⅆ𝑥
  +  m (m + 1) z  =  0   ------------(2) 

Multiplying (1) by z and (2) by y and subtracting, we get 

           (1 −  𝑥2)[ z 
d2z

dϰ2
− y 

d2z

dϰ2
] – 2x [z

dz

dx
 – y 

dz

dx
 ] + (n(n + 1) – m(m + 1))yz = 0 

(1 −  𝑥2){[ 𝑧 
ⅆ2𝑧

ⅆ𝜘2
+

ⅆ𝑧

ⅆ𝑥
 
ⅆ𝑦

ⅆ𝑧
 ] –  [

ⅆ𝑦

ⅆ𝑥

ⅆ𝑧

ⅆ𝑥
 + y 

ⅆ2𝑧

ⅆ𝜘2
 ]  - 2x[z

ⅆ𝑦

ⅆ𝑥
− 𝑦 

ⅆ𝑧

ⅆ𝑥
 ] 

                                                                     + (n- m)(n + m + 1) yz  = 0 

                        
ⅆ

ⅆ𝑥
[ (1 −  𝑥2)( 𝑧

ⅆ𝑧

ⅆ𝑥
 – y 

ⅆ𝑧

ⅆ𝑥
)] + (n- m)(n + m + 1)yz   = 0 

Now integrating from − 1 to 1, we get 

                    [(1 −  𝑥2)( 
ⅆ𝑧

ⅆ𝑥
 – y 

ⅆ𝑧

ⅆ𝑥
)]-1

+1  + (n- m)(n + m + 1) ∫ 𝑦. 𝑧. 𝑑𝑥 = 0
+1

−1
 

                                       0 + (n- m)(n + m + 1) ∫ 𝑦. 𝑧. 𝑑𝑥 = 0
+1

−1
 

                                                           ∫ 𝑃𝑚 (𝑥). 𝑃𝑛 (𝑥)𝑑𝑥 =  0         
+1

−1
    Proved.   

 

 

 

 



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

105                                                  Mathematical Physics 
 

5.12    GREEN’S THEOREM         

Statement:      

If  (x, y),  (x, y), 
𝜕𝜙

𝜕𝑦
 𝑎𝑛𝑑 

 𝜕𝜓

𝜕𝑥
 be continuous functions over a region R bounded by simple closed 

cuve C in x-y plane, then  

                                 ∮(𝜙 𝑑𝑥 + 𝜓 𝑑𝑦)           =  ∬ (
 𝜕𝜓

𝜕𝑥
− 

𝜕𝜙

𝜕𝑦
) 𝑑𝑥𝑑𝑦

R
          

𝑐

 

Example: 

A vector field 𝐹⃗ is given by 𝐹⃗ = siny 𝑖̂ + x (1+cosy) 𝑗̂ 

Evaluate the integral ∫ 𝐹⃗ ⋅
𝑐

 𝑑𝑟⃗⃗⃗⃗⃗ where C is the circular path given by 𝑥2 + 𝑦2 = 𝑎2. 

Solution: 

                                    𝐹⃗ = siny 𝑖̂ + x (1+cosy) 𝑗̂ 

∫ 𝐹⃗ ⋅
𝑐

 𝑑𝑟⃗⃗⃗⃗⃗  = ∫ (  siny 𝑖̂  +  x(1 + cosy) 𝑗̂)
𝑐

 . ( 𝑖̂ dx +  𝑗̂ 𝑑𝑦) 

                = siny dx + x (1+cosy) dy 

On applying green’s theorem, we get 

 

 

∮(𝜙 𝑑𝑥 + 𝜓 𝑑𝑦)           =  ∬ (
 𝜕𝜓

𝜕𝑥
−  

𝜕𝜙

𝜕𝑦
) 𝑑𝑥𝑑𝑦

s

          

𝑐

 

                                                                         = ∬ ((1 + 𝑐𝑜𝑠𝑦) − 𝑐𝑜𝑠𝑦)
s

dxdy 

Where s is the circular plane surface of radius a. 

                                                                         = ∬ 𝑑𝑥𝑑𝑦
s

 

                                                                         = area of circle  


